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Abstract 
The Schwarzschild solution to Einstein’s field equations reveals a potential singularity at a critical point known as the Schwarzschild radius. 

The singularity can be eliminated by transforming to any of several alternate coordinate systems. This fact supports the current interpretation 

that the Schwarzschild radius poses no obstruction to the formation of black holes or the smooth motion of bodies falling freely across it. 

However, while it is almost universally acknowledged, this interpretation harbors inconsistencies and unresolved issues. Over the past twenty 

years, I have performed a thorough reanalysis of this topic in search of a resolution to these unresolved issues. In the process, I have discovered 

that while the mathematical analysis is correct, the current interpretation of that analysis is faulty. In its place, I propose a far more intuitive 

interpretation of Schwarzschild geometry that is consistent with the mathematical analysis and reconciles perfectly with all related physical 

observations. This new model does, however, yield predictions concerning black hole theory that differ significantly from those of the current 

theory. 
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Introduction  
In 1915, Einstein published his field equations for General Relativity (GR). According to his theory, the combination of matter and 

energy distributed within a physical region produces warpage or curvature of spacetime. Falling bodies are constrained to follow 

geodesics within this curved spacetime continuum. Thus, the equations of motion are determined by deriving geodesics from the 

corresponding metric equations, rather than by applying Newtonian methods involving force and acceleration. 

The GR field equations are inherently complex; however, exact solutions have been found for some highly symmetric distributions. 

The first and perhaps the most well-known of these solutions was derived by Karl Schwarzschild in 1916. He confined his work to 

mass distributions that were spherically symmetric, neutrally charged, and non-rotating. He was able to quickly derive an exact solution 

for the region of empty space external to this configuration. Shortly thereafter, he followed with an idealized solution for the interior 

region. Tragically, Schwarzschild’s remarkable productivity halted four months later when he died of an illness contracted on the 

Russian front [1]. 

The Schwarzschild metric, which is his solution for the external region, is presented below without proof [2]. 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑟𝑟2

�1−𝑟𝑟𝑠𝑠𝑟𝑟 �
− 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 (1) 

                 Mini Review | Vol 12 Iss 12 



www.tsijournals.com | Dec 2024 
 

 
2 

where 𝑐𝑐 = speed of light
𝜏𝜏 = proper time
𝑡𝑡 = coordinate time
𝑟𝑟 = reduced circumference

𝜃𝜃,𝜙𝜙 = angular position markers
𝑟𝑟𝑠𝑠 = Schwarzschild radius

 

The Schwarzschild radius 𝑟𝑟𝑠𝑠 is defined as follows. 

 𝑟𝑟𝑠𝑠 = 2𝐺𝐺𝐺𝐺
𝑐𝑐2

 (2) 

where 𝐺𝐺 = Newtonian constant of gravitation
𝑀𝑀 = mass of the spherically symmetric body 

The Schwarzschild metric is the primary basis for the topics and discussions presented throughout this document1. From it, geodesics 

can be derived that lead directly to equations of motion for free-falling or orbiting bodies2. These results have been successfully 

employed to predict the precession of the orbit of Mercury and the deflection of starlight as it passes near the sun [3]. 

Despite the amazingly successful application of these methods, there is one potentially troubling aspect of the Schwarzschild metric. 

A singularity occurs when 𝑟𝑟 = 𝑟𝑟𝑠𝑠. The first term goes to zero, while the second term goes to infinity. However, this singularity can be 

eliminated by transformation to any of several alternate coordinate systems. This implies that the singularity is strictly mathematical 

in nature and leads to the conclusion that the metric characterizes a perfectly smooth pseudo-Riemannian manifold [4]. 

Arguably, the most significant prediction of GR is that of black holes. According to the current theory, if a star’s radius is less than or 

equal to 𝑟𝑟𝑠𝑠, light is red-shifted to an infinite wavelength, and the star becomes invisible to external observers. The spherical surface at 

𝑟𝑟 = 𝑟𝑟𝑠𝑠 is known as the event horizon and represents a point of no return. Supposedly anything that falls within the event horizon, 

including material objects and light itself, is unable to escape [4]. 

One of the best ways to understand the significance and nature of the Schwarzschild radius is to analyze the theoretical behavior of a 

small test body or probe released to fall freely toward it. Such analysis can be performed from either of two perspectives: one with 

respect to a fixed observer, and the other with respect to an observer moving in synchrony with the probe. I shall refer to the former as 

the fixed perspective and the latter as the onboard perspective. 

The curious thing is that analysis of these two perspectives appears to yield two different outcomes. The fixed perspective predicts that 

the probe will approach the Schwarzschild radius asymptotically and never actually cross it. On the other hand, the onboard perspective 

predicts that the probe will pass smoothly across the critical radius unobstructed. 

These outcomes are diametrically opposed. They cannot both be true. While there are multiple ways to analyze a probe’s motion, there 

is only one physical reality. In GR, motion is represented as a set of events. Those events can be tracked from any perspective using 

any desired coordinate system. But, while the coordinate values may differ depending on the perspective, the tracked events must be 

the same. The probe either crosses the Schwarzschild radius or it does not. We cannot have it both ways. 

 
1 It is assumed that the reader has some familiarity with the Schwarzschild metric. For those who desire more detailed information on 
its derivation and underlying theoretical principles, several excellent resources are identified in References. 

2 See Appendices A and B for the full derivations. 
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The current theory rests in favor of the onboard perspective. This is primarily justified by the fact that the onboard analysis suggests 

that there is a smooth, continuous geodesic from any point in the manifold to the origin. Because falling bodies follow geodesics in 

spacetime, it is logical to conclude that the motion of the probe must be smooth and uninterrupted as well. 

This argument seems compelling, if not irrefutable. However, after twenty years of research, I have finally discovered that it is the 

interpretation of the onboard perspective that is in error and that the fixed perspective is correct after all. This misinterpretation has 

significant ramifications, and correcting it will mean rethinking many of the time-honored conclusions of GR, including the plausibility 

of black holes. 

Analytic Preliminaries 
To correct the misinterpretation of the onboard perspective, it is first necessary to perform some preliminary analysis, including a 

review of the basic constraints of GR theory itself. 

General relativity basics 

In 1905, Einstein published his formulation of what we now call the Theory of Special Relativity (SR). This theory quantifies the rules 

governing the motion and behavior of material objects in a flat spacetime environment, that is, one free of gravitational influence. The 

keystone of SR is the Lorentz transformation, which defines the relationship between the space and time coordinates of two frames of 

reference, 𝑆𝑆 and 𝑆𝑆′, moving at a constant velocity 𝑣𝑣 relative to each other [5]. 

𝑡𝑡′ =
𝑡𝑡 − (𝑣𝑣/𝑐𝑐2)𝑥𝑥

�1 − 𝑣𝑣2/𝑐𝑐2
𝑡𝑡 =

𝑡𝑡′ + (𝑣𝑣/𝑐𝑐2)𝑥𝑥′

�1 − 𝑣𝑣2/𝑐𝑐2

𝑥𝑥′ =
𝑥𝑥 − 𝑣𝑣𝑣𝑣

�1 − 𝑣𝑣2/𝑐𝑐2
𝑥𝑥 =

𝑥𝑥′ + 𝑣𝑣𝑡𝑡′

�1 − 𝑣𝑣2/𝑐𝑐2
𝑦𝑦′ = 𝑦𝑦 𝑦𝑦 = 𝑦𝑦′
𝑧𝑧′ = 𝑧𝑧 𝑧𝑧 = 𝑧𝑧′

 

Given the occurrence of any two spacetime events 𝐸𝐸1(𝑡𝑡1, 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) and 𝐸𝐸2(𝑡𝑡2, 𝑥𝑥2,𝑦𝑦2 , 𝑧𝑧2), it is straightforward to apply the Lorentz 

transformation to derive the following invariant relationship, known as a spacetime interval3. 

 𝑔𝑔 = 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 (3) 

where  𝛥𝛥𝛥𝛥 = 𝑡𝑡2 − 𝑡𝑡1
𝛥𝛥𝛥𝛥 = 𝑥𝑥2 − 𝑥𝑥1
𝛥𝛥𝛥𝛥 = 𝑦𝑦2 − 𝑦𝑦1
𝛥𝛥𝛥𝛥 = 𝑧𝑧2 − 𝑧𝑧1

 

Any spacetime interval is classified into one of three categories depending on its sign. Because 𝑔𝑔 is invariant, its classification is also. 

In other words, the classification of a spacetime interval is an intrinsic property, independent of the frame of reference. 

𝑔𝑔 < 0 spacelike
𝑔𝑔 = 0 lightlike
𝑔𝑔 > 0 timelike

 

For any spacelike interval, one can always transform to a frame of reference where the events occur at the same time but at different 

locations. Setting 𝛥𝛥𝛥𝛥 = 0 in equation (3) yields the following relationship. 

 
3 Throughout the document I use the (+,−,−,−) convention where the time component is positive and the space components are 
negative, as opposed to the (−, +, +, +) convention where the opposite is true. The choice of conventions is a matter of preference, 
being equivalent as long as one reverses the polarity of all corresponding relationships. 

http://www.tsijournals.com/


www.tsijournals.com | Dec 2024 
 

 
4 

−𝑔𝑔 = (𝛥𝛥𝛥𝛥)2 + (𝛥𝛥𝛥𝛥)2 + (𝛥𝛥𝛥𝛥)2 

It is clear that −𝑔𝑔 represents the square of the physical distance between two simultaneous, spacelike events. This value is defined as 

the proper distance interval and is usually expressed using the symbol 𝜎𝜎. Using this definition, equation (3) can be expressed as follows, 

emphasizing that it is valid only for spacelike intervals. 

(𝛥𝛥𝛥𝛥)2 = (𝛥𝛥𝛥𝛥)2 + (𝛥𝛥𝛥𝛥)2 + (𝛥𝛥𝛥𝛥)2 − 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 

For any timelike interval, one can always transform to a frame of reference where the events occur at the same location but at different 

times. Setting 𝛥𝛥𝛥𝛥 = 𝛥𝛥𝛥𝛥 = 𝛥𝛥𝛥𝛥 = 0 in equation (3) yields the following relationship. 

𝑔𝑔 = 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 

It is clear that 𝑔𝑔/𝑐𝑐2 represents the square of the time interval between two timelike events that occur at the same location. This value 

is defined as the proper time interval and is usually expressed using the symbol 𝜏𝜏. Using this definition, equation (3) can be expressed 

as follows, emphasizing that it is valid only for timelike intervals. 

𝑐𝑐2(𝛥𝛥𝛥𝛥)2 = 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 

Lightlike intervals take on the following form. 

0 = 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 

The interpretation here is that the time difference between the events exactly matches the time required for a light signal to travel 

between them. From the perspective of an observer moving at the speed of light, the two events occur at the same place and at the same 

time. In other words, the two events appear to be the same event. 

The relationship between spacetime intervals can be summarized as follows: 

 (𝛥𝛥𝛥𝛥)2 = (𝛥𝛥𝛥𝛥)2 + (𝛥𝛥𝛥𝛥)2 + (𝛥𝛥𝛥𝛥)2 − 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 𝑔𝑔 < 0 (spacelike) (4) 

 0 = 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 𝑔𝑔 = 0 (lightlike) (5) 

 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 = 𝑐𝑐2(𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 − (𝛥𝛥𝛥𝛥)2 𝑔𝑔 > 0 (timelike) (6) 

In SR, one tracks the motion of material objects as a continuous series of events by extending equation (6) into the form of 

infinitesimals. 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑥𝑥2 − 𝑑𝑑𝑦𝑦2 − 𝑑𝑑𝑧𝑧2 (7) 

This expression defines the line element, or in SR jargon, the world line of a body with proper time 𝜏𝜏 as its invariant parameter. 

Note that only the timelike relationship of equation (6) is suitable for this purpose because it is only then that all observers agree on 

the time sequence of events. This is a critical point that will be referenced frequently. Unless all observers agree on the time sequence 

of events, it is impossible to establish causality between them. In other words, one cannot determine when one event causes another 

unless one can establish which of the events occurred first [6]. 

In 1908 Hermann Minkowski proposed combining time with the three spatial dimensions to form a blended entity called spacetime 

[7]. Accordingly, he developed a four-dimensional, geometric model for SR. To see how this works, first define coordinates in terms 

of the space and time variables. 
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𝑥𝑥0 = 𝑐𝑐𝑐𝑐
𝑥𝑥1 = 𝑥𝑥
𝑥𝑥2 = 𝑦𝑦
𝑥𝑥3 = 𝑧𝑧

 

Next, define the Lorentz metric as a second-rank tensor. 

𝜂𝜂𝜇𝜇𝜇𝜇 =

⎣
⎢
⎢
⎢
⎡

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎦
⎥
⎥
⎥
⎤
 

This enables equation (7) to be expressed as the metric equation for a simple, four-dimensional pseudo-Riemannian manifold, which 

defines what is known as Minkowski space. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝜂𝜂𝜇𝜇𝜇𝜇𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑𝑥𝑥𝜐𝜐 

Because 𝜂𝜂𝜇𝜇𝜇𝜇 is constant everywhere, the manifold is flat and thus models SR where the environment is free of gravitational influence. 

GR extends this idea to include gravitational effects by employing variable metric components. 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑔𝑔𝜇𝜇𝜇𝜇 𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑𝑥𝑥𝜐𝜐 (8) 

The components 𝑔𝑔𝜇𝜇𝜇𝜇 are functions of 𝑥𝑥𝜇𝜇 and are determined from the distribution of mass and energy. Thus, this metric equation 

models the curvature of spacetime in the form of a pseudo-Riemannian manifold. 

A defining property of Riemannian manifolds is that they are locally flat. At any point, one can transform to what are known as geodesic 

coordinates, which satisfy the following conditions when evaluated at the point of reference: 

𝑔𝑔𝜇𝜇𝜇𝜇(𝑝𝑝) = �±1 when 𝜇𝜇 = 𝜐𝜐
0 when 𝜇𝜇 ≠ 𝜐𝜐

∂𝑔𝑔𝜇𝜇𝜇𝜇
∂𝜇𝜇𝜌𝜌

� 𝑝𝑝 = 0
 

Thus, at the point of reference, the metric evaluates to a diagonal matrix of ±1 components. Such a metric characterizes a flat, local 

space that is Euclidean if all the components are positive, or pseudo-Euclidean if some of them are negative. Minkowski space is clearly 

pseudo-Euclidean. 

It is this feature of Riemannian manifolds that enables Einstein’s intuitive ideas of GR to be expressed as a geometric model. For any 

given mass and energy distribution, spacetime events can be recorded at large as points in a pseudo-Riemannian manifold. They can 

then be analyzed locally in flat geodesic coordinates by applying the principles of SR. The effect of this model is to eliminate the SR 

restriction that the relative velocity between frames of reference must be constant. The principles of SR are applicable to all inertial 

frames of reference, even though they may be accelerating relative to each other, as is the case in gravitational fields. 

General Relativity Constraints 

For this model to work, the locally flat space must be Minkowski space. In other words, it is essential for the metric of the geodesic 

coordinates at any point to be precisely equal to the Lorentz metric 𝜂𝜂𝜇𝜇𝜇𝜇. Otherwise, it is impossible to perform SR analysis. This 

requirement naturally leads to certain important constraints that must be enforced to ensure the validity of the model. 
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The combination of ±1 metric components of the geodesic coordinate system constitutes the signature of the manifold. This is 

expressed as (𝑝𝑝, 𝑞𝑞), where 𝑝𝑝 is the number of positive components, and 𝑞𝑞 is the number of negative components [8]. It can be shown 

that this signature is invariant, meaning that the values of 𝑝𝑝 and 𝑞𝑞 are the same everywhere within the manifold [9]. 

Manifolds are classified according to their signatures. A manifold with a signature of (𝑝𝑝, 0), where all the components are +1, is known 

as a Riemannian manifold. When 𝑝𝑝 > 0 and 𝑞𝑞 > 0, the manifold is pseudo-Riemannian or semi-Riemannian. A Lorentz manifold is a 

pseudo-Riemannian manifold with a specific signature of (1,3), and it is evident that any space applicable to GR must be a Lorentz 

manifold. It is only then that the corresponding local pseudo-Euclidean result can equate to Minkowski space. 

Although this requirement is necessary, it is not sufficient. Just because equation (8) characterizes a Lorentz manifold does not mean 

that every point within the manifold qualifies for GR analysis. There is a second, critical constraint for the geometric model which has 

previously been overlooked, ignored, and/or misunderstood. 

As noted earlier, the manifold signature (𝑝𝑝, 𝑞𝑞) is invariant. However, this does not imply that the order of the ±1 components along 

the local diagonal metrics is. Indeed, a Lorentz manifold may include regions where any of the four diagonal elements is positive while 

the others are negative. From a mathematical perspective, regions with any of these possibilities may be part of the same Lorentz 

manifold, as long as it is nondegenerate. All one needs to show is that the determinant of the metric equation is nonzero and thus 

invertible everywhere. The order of local diagonal elements may vary from one region to another. 

However, the only case applicable for GR analysis is the one that precisely matches the Lorentz metric 𝜂𝜂𝜇𝜇𝜇𝜇, being the one where the 

time component is positive. All others must be disregarded and rejected outright, not because of mathematical limitations, but because 

they violate the basic premise of GR that it must be possible to perform SR analysis locally at any point. This is only possible in 

Minkowski space where the time component is positive. 

This restriction can be understood in another way by a closer examination of equation (8), which is the GR equivalent of equation (7). 

Recall the earlier point that equation (7) is only valid for timelike intervals, meaning that the right side of the equation must be greater 

than zero, and the time component must be positive. The same restriction applies to equation (8). 

Recall that proper time is derived in SR by setting all distance intervals to zero. The same technique applies to GR. First, expand 

equation (8) to its full meaning. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑔𝑔00 𝑑𝑑𝑥𝑥0𝑑𝑑𝑥𝑥0 + 𝑔𝑔01 𝑑𝑑𝑥𝑥0𝑑𝑑𝑥𝑥1 + 𝑔𝑔02 𝑑𝑑𝑥𝑥0𝑑𝑑𝑥𝑥2 + 𝑔𝑔03 𝑑𝑑𝑥𝑥0𝑑𝑑𝑥𝑥3 +
𝑔𝑔10 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥0 + 𝑔𝑔11 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥1 + 𝑔𝑔12 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2 + 𝑔𝑔13 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥3 +
𝑔𝑔20 𝑑𝑑𝑥𝑥2𝑑𝑑𝑥𝑥0 + 𝑔𝑔21 𝑑𝑑𝑥𝑥2𝑑𝑑𝑥𝑥1 + 𝑔𝑔22 𝑑𝑑𝑥𝑥2𝑑𝑑𝑥𝑥2 + 𝑔𝑔23 𝑑𝑑𝑥𝑥2𝑑𝑑𝑥𝑥3 +
𝑔𝑔30 𝑑𝑑𝑥𝑥3𝑑𝑑𝑥𝑥0 + 𝑔𝑔31 𝑑𝑑𝑥𝑥3𝑑𝑑𝑥𝑥1 + 𝑔𝑔32 𝑑𝑑𝑥𝑥3𝑑𝑑𝑥𝑥2 + 𝑔𝑔33 𝑑𝑑𝑥𝑥3𝑑𝑑𝑥𝑥3

 

Then set all the distance infinitesimals to zero. 

𝑑𝑑𝑥𝑥1 = 𝑑𝑑𝑥𝑥2 = 𝑑𝑑𝑥𝑥3 = 0 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑔𝑔00 𝑑𝑑𝑥𝑥0𝑑𝑑𝑥𝑥0 = 𝑔𝑔00(𝑐𝑐 𝑑𝑑𝑑𝑑)(𝑐𝑐 𝑑𝑑𝑑𝑑) 

𝑑𝑑𝑑𝑑 = �𝑔𝑔00 𝑑𝑑𝑑𝑑 

This is the GR definition of proper time 𝜏𝜏. Note that this generalization is entirely consistent with the definition of proper time in SR 

where 𝑔𝑔00 = 1. In either case, proper time is the invariant parameter that quantifies the motion of material objects through the spacetime 

continuum. 
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For this to work, the value of 𝜏𝜏 must be real and nonzero, which means that 𝑔𝑔00 must be positive. This restriction is equivalent to 

requiring that the local geodesic coordinate systems equate to Minkowski space where the time component is positive. 

Lorentz manifolds in general admit regions where 𝑔𝑔00 > 0, 𝑔𝑔00 = 0, or 𝑔𝑔00 < 0; which can be classified as timelike, lightlike, or 

spacelike respectively [10]. Relativistic analysis must be limited to timelike regions because proper time is undefined everywhere else. 

We say that timelike regions are time-orientable. It is only there that all observers agree on which of two events occurs first from a 

time perspective. In summary, valid GR analysis must be constrained by the following two principles: 

• All spacetime events must be represented as points within a Lorentz manifold. 

• All analysis must be restricted to timelike regions where 𝑔𝑔00 > 0. 

Rotating frame of reference 

To illustrate these concepts, consider the example of a rotating frame of reference. Begin with equation (7) and transform to cylindrical 

polar coordinates. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑥𝑥2 − 𝑑𝑑𝑦𝑦2 − 𝑑𝑑𝑧𝑧2 

𝑥𝑥 = 𝜌𝜌cos𝜙𝜙 

𝑦𝑦 = 𝜌𝜌sin𝜙𝜙 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝜌𝜌2𝑑𝑑𝜙𝜙2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 (9) 

Transform to a frame of reference that rotates about the 𝑧𝑧 axis at constant angular velocity 𝜔𝜔. 

𝜙𝜙� = 𝜙𝜙 − 𝜔𝜔𝜔𝜔 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝜙𝜙� + 𝜔𝜔 𝑑𝑑𝑑𝑑 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = (𝑐𝑐2 − 𝜔𝜔2𝜌𝜌2)𝑑𝑑𝑡𝑡2 − 2𝜔𝜔𝜌𝜌2𝑑𝑑𝑑𝑑 𝑑𝑑𝜙𝜙� − 𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 

Define a new constant 𝜌𝜌𝑜𝑜. 

 𝜌𝜌𝑜𝑜 = 𝑐𝑐
𝜔𝜔

 (10) 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝜌𝜌2

𝜌𝜌𝑜𝑜2
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − �2𝑐𝑐𝜌𝜌

2

𝜌𝜌𝑜𝑜
� 𝑑𝑑𝑑𝑑 𝑑𝑑𝜙𝜙� − 𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 (11) 

Eliminate the off-diagonal 𝑑𝑑𝑑𝑑 𝑑𝑑𝜙𝜙� term by transforming to the time coordinate 𝑡̂𝑡 as defined below: 

𝑑𝑑𝑡̂𝑡 = 𝑑𝑑𝑑𝑑 −
� 𝜌𝜌

2

𝑐𝑐𝜌𝜌𝑜𝑜
�

�1 − 𝜌𝜌2
𝜌𝜌𝑜𝑜2
�
𝑑𝑑𝜙𝜙� 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝜌𝜌2

𝜌𝜌𝑜𝑜2
� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 − 1

�1−𝜌𝜌
2

𝜌𝜌𝑜𝑜2
�
𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 (12) 

The determinant of this expression is −𝑐𝑐2𝜌𝜌2, and because its value is nonzero everywhere except when 𝜌𝜌 = 0, the manifold is 

nondegenerate, and thus qualifies as a pseudo-Riemannian manifold. Equation (12) can now be normalized and brought into full 

canonical form at 𝜌𝜌 = 𝑎𝑎 by transforming to coordinates 𝑡𝑡𝑎𝑎 and 𝜙𝜙𝑎𝑎 as defined below: 
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 𝑑𝑑𝑡𝑡𝑎𝑎 = �1 − 𝑎𝑎2

𝜌𝜌𝑜𝑜2
 𝑑𝑑𝑡̂𝑡 (13) 

 𝑑𝑑𝜙𝜙𝑎𝑎 = 1

�1−𝑎𝑎
2

𝜌𝜌𝑜𝑜2

 𝑑𝑑𝜙𝜙� (14) 

𝑐𝑐2𝑑𝑑𝜏𝜏2 =
�1 − 𝜌𝜌2

𝜌𝜌𝑜𝑜2
�

�1 − 𝑎𝑎2
𝜌𝜌𝑜𝑜2
�
𝑐𝑐2(𝑑𝑑𝑡𝑡𝑎𝑎)2 −

�1 − 𝑎𝑎2
𝜌𝜌𝑜𝑜2
�

�1 − 𝜌𝜌2
𝜌𝜌𝑜𝑜2
�
𝜌𝜌2(𝑑𝑑𝜙𝜙𝑎𝑎)2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 

When 𝜌𝜌 = 𝑎𝑎, this evaluates to the following form. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑐𝑐2(𝑑𝑑𝑡𝑡𝑎𝑎)2 − 𝜌𝜌2(𝑑𝑑𝜙𝜙𝑎𝑎)𝑎𝑎2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2  where 𝜌𝜌 = 𝑎𝑎 

Note that this form exactly mirrors that of equation (9), demonstrating that coordinates 𝑡𝑡𝑎𝑎, 𝜙𝜙𝑎𝑎, 𝜌𝜌, and 𝑧𝑧 qualify as geodesic coordinates 

at 𝜌𝜌 = 𝑎𝑎. Because the signature is (1,3) the manifold itself is a Lorentz manifold. Because the metric is precisely the Lorentz metric 

𝜂𝜂𝜇𝜇𝜇𝜇, equation (12) qualifies as the world line for material objects. For example, it can be used to derive timelike geodesics parameterized 

by 𝜏𝜏, which describe the motion of such objects in the absence of external forces. 

However, as described in the previous section, there is an important restriction. The geometric model for GR only applies when  

𝑔𝑔00 > 0 or, in this particular case, when (1 − 𝜌𝜌2/𝜌𝜌𝑜𝑜2) > 0 or equivalently when 𝜌𝜌 < 𝜌𝜌𝑜𝑜. To illustrate why this restriction exists, repeat 

the analysis for the case in which 𝜌𝜌 > 𝜌𝜌𝑜𝑜. In this case it is more appropriate to express equation (12) in the following form: 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = −�𝜌𝜌
2

𝜌𝜌𝑜𝑜2
− 1� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 + 1

�𝜌𝜌
2

𝜌𝜌𝑜𝑜2
−1�

𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 (15) 

This time transforming to 𝑡𝑡𝑎𝑎 and 𝜙𝜙𝑎𝑎 as defined by equations (13) and (14) does not work because they assume imaginary values when 

𝑎𝑎 > 𝜌𝜌𝑜𝑜. Instead, it is necessary to use the following definitions. 

𝑑𝑑𝑡𝑡𝑎𝑎 = �
𝑎𝑎2

𝜌𝜌𝑜𝑜2
− 1 𝑑𝑑𝑡̂𝑡 

𝑑𝑑𝜙𝜙𝑎𝑎 =
1

�𝑎𝑎
2

𝜌𝜌𝑜𝑜2
− 1

 𝑑𝑑𝜙𝜙� 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = −
�𝜌𝜌

2

𝜌𝜌𝑜𝑜2
− 1�

�𝑎𝑎
2

𝜌𝜌𝑜𝑜2
− 1�

𝑐𝑐2(𝑑𝑑𝑡𝑡𝑎𝑎)2 +
�𝑎𝑎

2

𝜌𝜌𝑜𝑜2
− 1�

�𝜌𝜌
2

𝜌𝜌𝑜𝑜2
− 1�

𝜌𝜌2(𝑑𝑑𝜙𝜙𝑎𝑎)𝑎𝑎2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 

When 𝜌𝜌 = 𝑎𝑎, this evaluates to the following form. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = −𝑐𝑐2(𝑑𝑑𝑡𝑡𝑎𝑎)2 + 𝜌𝜌2(𝑑𝑑𝜙𝜙𝑎𝑎)𝑎𝑎2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2  where 𝜌𝜌 = 𝑎𝑎 

Again coordinates 𝑡𝑡𝑎𝑎, 𝜙𝜙𝑎𝑎, 𝜌𝜌, and 𝑧𝑧 qualify as geodesic coordinates at 𝜌𝜌 = 𝑎𝑎, but this time the metric is wrong. The signature is still 

(1,3), but the local space is not Minkowski space. Thus, the geometric model for GR is no longer valid. In addition, because 𝑔𝑔00 < 0, 

proper time 𝜏𝜏 assumes an imaginary value and is therefore undefined. To correct this issue it is necessary to parameterize equation (15) 

with proper distance 𝜎𝜎 instead of proper time 𝜏𝜏. 
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−𝑑𝑑𝜎𝜎2 = −�
𝜌𝜌2

𝜌𝜌𝑜𝑜2
− 1� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 +

1

�𝜌𝜌
2

𝜌𝜌𝑜𝑜2
− 1�

𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 

Mathematical analysis of this expression is possible; however, it is essentially worthless. For example, geodesics can be derived, but 

they are spacelike geodesics that provide no information regarding the time dependency of motion. 

To obtain a clearer understanding of why the GR geometric model is limited to timelike regions, refer back to equation (10). 

𝜌𝜌𝑜𝑜 =
𝑐𝑐
𝜔𝜔

 

𝜌𝜌𝑜𝑜𝜔𝜔 = 𝑐𝑐 

Note that 𝜌𝜌𝑜𝑜𝜔𝜔 is the velocity of a point in the rotating frame which is 𝜌𝜌𝑜𝑜 units from the origin. Therefore, points in the rotating frame 

where 𝜌𝜌 ≥ 𝜌𝜌𝑜𝑜 equate to velocities 𝑣𝑣 ≥ 𝑐𝑐. Thus, lightlike and spacelike regions correspond to frames of reference that are moving at or 

beyond the speed of light. 

Recall that the Lorentz transformation is applicable only when 𝑣𝑣 < 𝑐𝑐. This is a critical restriction that must be adhered to at all times. 

Everything in relativity, including all aspects of GR, is based on, and ultimately derives from, the Lorentz transformation. Thus, there 

are no circumstances under which relativity can tell us anything about frames of reference that are moving at or beyond the speed of 

light. This is a fundamental restriction that cannot be disregarded, regardless of how creative one’s imagination may be or how 

desperately one wishes to believe otherwise. 

To summarize this rotating frame of reference illustration, the manifold characterized by metric equation (12) is a Lorentz manifold 

that consists of three regions identified below. These classifications are analogous to those of spacetime intervals as per equations (4), 

(5), and (6). 

 𝑑𝑑𝜎𝜎2 = �𝜌𝜌
2

𝜌𝜌𝑜𝑜2
− 1� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 − 1

�𝜌𝜌
2

𝜌𝜌𝑜𝑜2
−1�

𝜌𝜌2𝑑𝑑𝜙𝜙�2 + 𝑑𝑑𝜌𝜌2 + 𝑑𝑑𝑧𝑧2 𝜌𝜌 > 𝜌𝜌𝑜𝑜 (spacelike)  

 0 = �1 − 𝜌𝜌2

𝜌𝜌𝑜𝑜2
� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 − 1

�1−𝜌𝜌
2

𝜌𝜌𝑜𝑜2
�
𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 𝜌𝜌 = 𝜌𝜌𝑜𝑜 (lightlike)  

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝜌𝜌2

𝜌𝜌𝑜𝑜2
� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 − 1

�1−𝜌𝜌
2

𝜌𝜌𝑜𝑜2
�
𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 𝜌𝜌 < 𝜌𝜌𝑜𝑜 (timelike)  

Geodesics can be derived for spacelike regions, but they must be parameterized by proper distance 𝜎𝜎, which means that the results do 

not provide information about the time dependency of motion within that region. In lightlike regions, no geodesic solutions are possible 

because there is no invariant parameter available for that purpose. 

It is only in timelike regions that proper time is defined as real and nonzero. Only then can geodesics be derived using proper time 𝜏𝜏 

as the invariant parameter. These timelike geodesics are the world lines for material objects as they move through the spacetime 

continuum, and for that reason, GR analysis is limited to timelike regions. Material objects move along timelike geodesics. Light moves 

along null geodesics. Nothing moves along spacelike geodesics because, to do so, they must be moving at speeds greater than that of 

light. 

Schwarzschild Geometry 

Focus now on the spacetime manifold characterized by the Schwarzschild metric equation (1). 
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 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑟𝑟2

�1−𝑟𝑟𝑠𝑠𝑟𝑟 �
− 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 (16) 

The determinant of this expression is −𝑐𝑐2𝑟𝑟4sin2𝜃𝜃. Because its value is nonzero everywhere except when 𝑟𝑟 = 0, the manifold is 

nondegenerate and thus qualifies as a pseudo-Riemannian manifold. The apparent singularity at 𝑟𝑟 = 𝑟𝑟𝑠𝑠 can be eliminated by 

transformation to any of several alternate coordinate systems4. 

Consider the case in which 𝑟𝑟 > 𝑟𝑟𝑠𝑠. Transform to coordinates 𝑡𝑡𝑎𝑎 and 𝑟𝑟𝑎𝑎 as defined below: 

 𝑑𝑑𝑑𝑑𝑎𝑎 = �1 − 𝑟𝑟𝑠𝑠
𝑎𝑎
 𝑑𝑑𝑑𝑑 (17) 

 𝑑𝑑𝑟𝑟𝑎𝑎 = 1

�1−𝑟𝑟𝑠𝑠𝑎𝑎

 𝑑𝑑𝑑𝑑 (18) 

𝑐𝑐2𝑑𝑑𝜏𝜏2 =
�1 − 𝑟𝑟𝑠𝑠

𝑟𝑟�

�1 − 𝑟𝑟𝑠𝑠
𝑎𝑎�

𝑐𝑐2(𝑑𝑑𝑡𝑡𝑎𝑎)2 −
�1 − 𝑟𝑟𝑠𝑠

𝑎𝑎�

�1 − 𝑟𝑟𝑠𝑠
𝑟𝑟�

(𝑑𝑑𝑟𝑟𝑎𝑎)2 − 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 

Evaluate this expression at 𝑟𝑟 = 𝑎𝑎. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑐𝑐2(𝑑𝑑𝑡𝑡𝑎𝑎)2 − (𝑑𝑑𝑟𝑟𝑎𝑎)2 − 𝑎𝑎2𝑑𝑑𝜃𝜃2 − 𝑎𝑎2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2  where 𝑟𝑟 = 𝑎𝑎 

This result is locally flat, demonstrating that coordinates 𝑡𝑡𝑎𝑎, 𝑟𝑟𝑎𝑎, 𝜃𝜃, and 𝜙𝜙 qualify as geodesic coordinates at 𝑟𝑟 = 𝑎𝑎. Because the signature 

is (1,3) the manifold itself is a Lorentz manifold, and because the metric is the Lorentz metric 𝜂𝜂𝜇𝜇𝜇𝜇, the local space is Minkowski space. 

As expected, 𝑟𝑟 > 𝑟𝑟𝑠𝑠 is a timelike region that fully qualifies for GR analysis. 

Next, consider the case where 𝑟𝑟 < 𝑟𝑟𝑠𝑠. Note that in this region the signs of the first two terms in equation (16) are reversed, so it is more 

appropriate to express the metric equation this way. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = −�
𝑟𝑟𝑠𝑠
𝑟𝑟
− 1� 𝑐𝑐2𝑑𝑑𝑡𝑡2 +

𝑑𝑑𝑟𝑟2

�𝑟𝑟𝑠𝑠𝑟𝑟 − 1�
− 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 

This time, transforming to 𝑡𝑡𝑎𝑎 and 𝑟𝑟𝑎𝑎 as defined by equations (17) and (18) does not work because they assume imaginary values when 

𝑟𝑟 < 𝑟𝑟𝑠𝑠. Instead, it is necessary to use the following definitions. 

𝑑𝑑𝑡𝑡𝑎𝑎 = �
𝑟𝑟𝑠𝑠
𝑎𝑎
− 1 𝑑𝑑𝑑𝑑 

𝑑𝑑𝑟𝑟𝑎𝑎 =
1

�𝑟𝑟𝑠𝑠𝑎𝑎 − 1
 𝑑𝑑𝑑𝑑 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = −
�𝑟𝑟𝑠𝑠𝑟𝑟 − 1�

�𝑟𝑟𝑠𝑠𝑎𝑎 − 1�
𝑐𝑐2(𝑑𝑑𝑡𝑡𝑎𝑎)2 +

�𝑟𝑟𝑠𝑠𝑎𝑎 − 1�

�𝑟𝑟𝑠𝑠𝑟𝑟 − 1�
(𝑑𝑑𝑟𝑟𝑎𝑎)2 − 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 

Evaluate this expression at 𝑟𝑟 = 𝑎𝑎. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = −𝑐𝑐2(𝑑𝑑𝑡𝑡𝑎𝑎)2 + (𝑑𝑑𝑟𝑟𝑎𝑎)2 − 𝑎𝑎2𝑑𝑑𝜃𝜃2 − 𝑎𝑎2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2  where  𝑟𝑟 = 𝑎𝑎 

 
4 See Appendix C for an example of such a transformation to Gullstrand–Painlevé coordinates. 
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Again, the local space at 𝑟𝑟 = 𝑎𝑎 is flat, confirming that coordinates 𝑡𝑡𝑎𝑎, 𝑟𝑟𝑎𝑎, 𝜃𝜃, and 𝜙𝜙 qualify as geodesic coordinates. However, this time, 

although the signature is still (1,3), the local metric is not the Lorentz metric 𝜂𝜂𝜇𝜇𝜇𝜇. 

Similar to the rotating frame of reference example, the Schwarzschild metric characterizes a Lorentz manifold that includes three 

regions. 

 𝑑𝑑𝜎𝜎2 = �𝑟𝑟𝑠𝑠
𝑟𝑟
− 1� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑟𝑟2

�𝑟𝑟𝑠𝑠𝑟𝑟 −1�
+ 𝑟𝑟2𝑑𝑑𝜃𝜃2 + 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 𝑟𝑟 < 𝑟𝑟𝑠𝑠 (spacelike)  

 0 = �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑟𝑟2

�1−𝑟𝑟𝑠𝑠𝑟𝑟 �
− 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 𝑟𝑟 = 𝑟𝑟𝑠𝑠 (lightlike)  

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑟𝑟2

�1−𝑟𝑟𝑠𝑠𝑟𝑟 �
− 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 𝑟𝑟 > 𝑟𝑟𝑠𝑠 (timelike) (19) 

Surely the parallel with the rotating frame of reference is self-evident. The spacelike and lightlike regions of Schwarzschild geometry 

are disqualified from GR analysis in the same way as those of the rotating frame of reference and for the same reasons. It is only when 

𝑟𝑟 > 𝑟𝑟𝑠𝑠 that 𝑔𝑔00 > 0 and proper time is both real and nonzero. GR theory provides no information about time-dependent motion where 

𝑟𝑟 ≤ 𝑟𝑟𝑠𝑠, and therefore any attempts to apply GR analysis in these regions must be summarily abandoned and disregarded. Unfortunately, 

despite this clear and simple conclusion, theorists have for decades felt compelled to manufacture convoluted explanations for how the 

application of GR theory might extend to these irrelevant regions. 

The typical explanation goes something like this. When 𝑟𝑟 becomes less than 𝑟𝑟𝑠𝑠, the value of the metric goes negative, and the signs of 

𝑔𝑔00 and 𝑔𝑔11 switch. This means that paths along the 𝑡𝑡 axis (𝑟𝑟, 𝜃𝜃, 𝜙𝜙 constant) are spacelike, while paths along the 𝑟𝑟 axis (𝑡𝑡, 𝜃𝜃, 𝜙𝜙 

constant) are timelike. This suggests that the roles of coordinates 𝑟𝑟 and 𝑡𝑡 switch, meaning that somehow 𝑟𝑟 should be interpreted as the 

time marker, and 𝑡𝑡 should be interpreted as the radial marker. In this context, the metric’s value is positive only if 𝑑𝑑𝑟𝑟2 ≠ 0, which 

means in turn that the value of 𝑟𝑟 cannot remain fixed. A falling object must inevitably fall into a singularity at the center of the black 

hole [4]. This interpretation is a great example of the kind of mental gymnastics that become necessary when one assumes the principles 

of GR in regions where they simply do not apply. 

So why is the disqualification of spacelike and lightlike regions so obvious for a rotating frame of reference and not for Schwarzschild 

geometry? In the former case, it is clear that those regions correspond to physical conditions which are known to be impossible. 

Relativity applies only to frames of reference moving at relative speeds slower than that of light. Thus, it is only the timelike region 

that corresponds to physical reality. On the other hand, it is not intuitively obvious that regions in Schwarzschild geometry where  

𝑟𝑟 ≤ 𝑟𝑟𝑠𝑠 are likewise beyond the realm of physical reality. 

Attempts to apply GR analysis to points on or inside an event horizon are predicated on the assumption that the existence of black 

holes is, at least in principle, actually possible. On the other hand, if it can be shown that the formation of black holes is fundamentally 

impossible, then the entire exercise becomes pointless. If black holes are not possible, then points on or inside an event horizon do not 

correspond to physical reality, and thus there is no need to analyze them. To explore that idea, it is advantageous to thoroughly analyze 

the theoretical behavior of a small free-falling probe as it nears the event horizon. 

Reconciling the Free-Falling Probe Perspectives 
As briefly described in the Introduction, the behavior of a falling probe can be analyzed from two different perspectives: the fixed 

perspective and the onboard perspective. In this section, the topic is reanalyzed in detail to correct the misinterpretation of the onboard 

perspective and establish a clear reconciliation with the fixed perspective. 
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Fixed perspective 

An external observer at a fixed location tracks the motion of a free-falling probe in terms of coordinate time 𝑡𝑡. Thus, the appropriate 

equations of motion are (35) and (36), as derived in Appendix A. 

𝐻𝐻 =
𝑇𝑇𝑟𝑟2

𝑐𝑐2 �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

=
𝑐𝑐4

𝑇𝑇2
�1 −

𝑟𝑟𝑠𝑠
𝑟𝑟
�
2
�2𝑄𝑄 +

𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟

−
𝐻𝐻2

𝑟𝑟2
+
𝑟𝑟𝑠𝑠𝐻𝐻2

𝑟𝑟3
� 

At 𝑡𝑡 = 0, the probe is released directly toward the black hole from point 𝑟𝑟 = 𝑎𝑎 with an initial local velocity 𝑣𝑣𝑎𝑎. Releasing the probe in 

a direct line toward the black hole equates to the initial condition 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0, thus 𝐻𝐻 = 0. 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

=
𝑐𝑐4

𝑇𝑇2
�1 −

𝑟𝑟𝑠𝑠
𝑟𝑟
�
2
�2𝑄𝑄 +

𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟
� 

Take the square root of both sides and choose the negative sign for the inward path. 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝑐𝑐2

𝑇𝑇
�1 − 𝑟𝑟𝑠𝑠

𝑟𝑟
��2𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠

𝑟𝑟
 (20) 

Use equation (33) to eliminate 𝑇𝑇. 

𝑄𝑄 =
1
2
�
𝑇𝑇2

𝑐𝑐2
− 𝑐𝑐2� 

𝑐𝑐2

𝑇𝑇
=

𝑐𝑐

�2𝑄𝑄 + 𝑐𝑐2
 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝑐𝑐
�2𝑄𝑄+𝑐𝑐2

�1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
��2𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠

𝑟𝑟
  

Separate the variables. 

𝑑𝑑𝑑𝑑 = −
�2𝑄𝑄 + 𝑐𝑐2 𝑑𝑑𝑑𝑑

𝑐𝑐 �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟��2𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠

𝑟𝑟

 

 𝑡𝑡(𝑟𝑟) = 1
𝑐𝑐
�2𝑄𝑄 + 𝑐𝑐2 ∫ 𝑟𝑟2𝑑𝑑𝑑𝑑

(𝑟𝑟−𝑟𝑟𝑠𝑠)�2𝑄𝑄𝑟𝑟2+𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟
𝑎𝑎
𝑟𝑟  (21) 

By making use of the following relationship 

𝑟𝑟2

𝑟𝑟 − 𝑟𝑟𝑠𝑠
= 𝑟𝑟 + 𝑟𝑟𝑠𝑠 +

𝑟𝑟𝑠𝑠2

𝑟𝑟 − 𝑟𝑟𝑠𝑠
 

equation (21) can be expressed as follows. 

𝑡𝑡(𝑟𝑟) = 𝑓𝑓(𝑟𝑟) + 𝑔𝑔(𝑟𝑟) 
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where 𝑓𝑓(𝑟𝑟) =
1
𝑐𝑐
�2𝑄𝑄 + 𝑐𝑐2 �

(𝑟𝑟 + 𝑟𝑟𝑠𝑠)𝑑𝑑𝑑𝑑

�2𝑄𝑄𝑟𝑟2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟

𝑎𝑎

𝑟𝑟

𝑔𝑔(𝑟𝑟) =
𝑟𝑟𝑠𝑠2

𝑐𝑐
�2𝑄𝑄 + 𝑐𝑐2 �

𝑑𝑑𝑑𝑑
(𝑟𝑟 − 𝑟𝑟𝑠𝑠)�2𝑄𝑄𝑟𝑟2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟

𝑎𝑎

𝑟𝑟

 

Similar to the Newtonian solution, 𝑓𝑓(𝑟𝑟) assumes one of three forms, depending on the value of 𝑄𝑄. 

 
𝑓𝑓(𝑟𝑟) = �2𝑄𝑄+𝑐𝑐2

2𝑄𝑄𝑄𝑄
��2𝑄𝑄𝑎𝑎2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑎𝑎 − �2𝑄𝑄𝑟𝑟2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟�

+ 𝑟𝑟𝑠𝑠�𝑐𝑐2−4𝑄𝑄��2𝑄𝑄+𝑐𝑐2

2(2𝑄𝑄)3/2𝑐𝑐
ln �2�2𝑄𝑄�2𝑄𝑄𝑟𝑟

2+𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟+4𝑄𝑄𝑄𝑄+𝑐𝑐2𝑟𝑟𝑠𝑠
2�2𝑄𝑄�2𝑄𝑄𝑎𝑎2+𝑐𝑐2𝑟𝑟𝑠𝑠𝑎𝑎+4𝑄𝑄𝑄𝑄+𝑐𝑐2𝑟𝑟𝑠𝑠

�
 for 𝑄𝑄 > 0 

 𝑓𝑓(𝑟𝑟) = 2
3𝑐𝑐�𝑟𝑟𝑠𝑠

�(𝑎𝑎 + 3𝑟𝑟𝑠𝑠)√𝑎𝑎 − (𝑟𝑟 + 3𝑟𝑟𝑠𝑠)√𝑟𝑟� for 𝑄𝑄 = 0 

 
𝑓𝑓(𝑟𝑟) = �2𝑄𝑄+𝑐𝑐2

(−2𝑄𝑄)𝑐𝑐
��2𝑄𝑄𝑟𝑟2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟 − �2𝑄𝑄𝑎𝑎2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑎𝑎�

+ 𝑟𝑟𝑠𝑠�𝑐𝑐2−4𝑄𝑄��2𝑄𝑄+𝑐𝑐2

2(−2𝑄𝑄)3/2𝑐𝑐
�cos−1 �−4𝑄𝑄𝑄𝑄

𝑐𝑐2𝑟𝑟𝑠𝑠
− 1� − cos−1 �−4𝑄𝑄𝑄𝑄

𝑐𝑐2𝑟𝑟𝑠𝑠
− 1��

 for 𝑄𝑄 < 0 

In contrast, 𝑔𝑔(𝑟𝑟) assumes a single form for all values of 𝑄𝑄. There is no parallel in the Newtonian solution. 

𝑔𝑔(𝑟𝑟) =
𝑟𝑟𝑠𝑠
𝑐𝑐

ln �
��2𝑄𝑄𝑄𝑄 + 𝑐𝑐2𝑟𝑟 + �2𝑄𝑄𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠���2𝑄𝑄𝑄𝑄 + 𝑐𝑐2𝑎𝑎 − �2𝑄𝑄𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠�

��2𝑄𝑄𝑄𝑄 + 𝑐𝑐2𝑎𝑎 + �2𝑄𝑄𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠���2𝑄𝑄𝑄𝑄 + 𝑐𝑐2𝑟𝑟 − �2𝑄𝑄𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠�
� 

All three forms of 𝑓𝑓(𝑟𝑟) behave well throughout the domain 𝑎𝑎 ≥ 𝑟𝑟 ≥ 0, that is no singularities arise. However, this is not the case for 

𝑔𝑔(𝑟𝑟). Here, the expression approaches infinity as 𝑟𝑟 approaches 𝑟𝑟𝑠𝑠. Thus, for all values of 𝑄𝑄, coordinate time 𝑡𝑡 approaches infinity as 

well. This implies that the probe never reaches the event horizon. 

For simplicity, most authors illustrate this point by presenting only the case in which 𝑄𝑄 = 0. Although the math is more involved, I 

have chosen to include the analysis for all cases to demonstrate that the result is quite general. From the perspective of any fixed 

observer, the probe will not reach the event horizon in a finite period, regardless of when or where it is released or how fast it is initially 

moving. This result is illustrated graphically in FIG. 1. 

FIG. 1. Probe’s motion from the fixed perspective. 
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Fixed local perspective 

One result of this fixed perspective is that 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 approaches zero as 𝑟𝑟 approaches 𝑟𝑟𝑠𝑠. This is immediately apparent in equation (20). 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑐𝑐2

𝑇𝑇
�1 −

𝑟𝑟𝑠𝑠
𝑟𝑟
��2𝑄𝑄 +

𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟

 

It is sometimes said that the fixed perspective predicts that the probe will “freeze” near the event horizon. This concept is not intuitive 

and is extremely misleading. 

It is important to understand that Schwarzschild coordinates 𝑟𝑟 and 𝑡𝑡 are ephemeris coordinates, meaning that they are simply markers 

or bookkeeping units used to record and catalog events. As such they do not equate to what observers actually measure, except in the 

special cases where the point of reference is far removed from the origin or the mass is relatively small. 

One obtains a better sense of what is going on by examining the probe’s velocity from the perspective of actual measurements taken 

locally by fixed observers positioned along the path. This information is readily available from equation (42) in Appendix B. 

𝑇𝑇 =
𝑐𝑐2�1 − 𝑟𝑟𝑠𝑠

𝑎𝑎

�1 − 𝑣𝑣𝑎𝑎2
𝑐𝑐2

 

This expression establishes the value of 𝑇𝑇 from the initial conditions 𝑟𝑟 = 𝑎𝑎 and 𝑣𝑣 = 𝑣𝑣𝑎𝑎, where the initial position and velocity of the 

probe are measured locally at that point. However, because 𝑇𝑇 is constant, the relationship holds for all values of 𝑟𝑟 and 𝑣𝑣𝑟𝑟  anywhere 

along the probe’s path. 

 𝑇𝑇 =
𝑐𝑐2�1−𝑟𝑟𝑠𝑠𝑟𝑟

�1−𝑣𝑣𝑟𝑟
2

𝑐𝑐2

 (22) 

Solve this expression for 𝑣𝑣𝑟𝑟 . 

𝑣𝑣𝑟𝑟 = 𝑐𝑐�1 −
𝑐𝑐4

𝑇𝑇2
�1 −

𝑟𝑟𝑠𝑠
𝑟𝑟
� 

This is the probe’s velocity measured locally by a fixed observer at location 𝑟𝑟. One simply imagines an infinite set of fixed observers 

positioned along the probe’s path, each measuring the probe’s velocity in the same manner as it passes by. Clearly, the probe does not 

slow down or stop. Instead, its velocity continues to accelerate indefinitely along the entire path and approaches the speed of light as 𝑟𝑟 

approaches 𝑟𝑟𝑠𝑠. 

lim
𝑟𝑟→𝑟𝑟𝑠𝑠

𝑣𝑣𝑟𝑟 = 𝑐𝑐 

Additional insight is gained by examining the energy of the probe as it moves along the path. To do so simply rearrange equation (22) 

into the following form, where 𝑚𝑚𝑜𝑜 is the rest mass of the probe. 

𝑚𝑚𝑜𝑜𝑇𝑇

�1 − 𝑟𝑟𝑠𝑠
𝑟𝑟

=
𝑚𝑚𝑜𝑜𝑐𝑐2

�1 − 𝑣𝑣𝑟𝑟2
𝑐𝑐2

= 𝑚𝑚𝑟𝑟𝑐𝑐2 = 𝐸𝐸𝑟𝑟 
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This is the expression for the total relativistic energy of the probe, measured locally as a function of its location 𝑟𝑟. It is clear that energy 

increases as the value of 𝑟𝑟 decreases. This makes sense because it is falling through an ever-increasing gravitational potential. It is 

gaining energy throughout the process. It is also apparent that the energy approaches infinity as 𝑟𝑟 approaches 𝑟𝑟𝑠𝑠. 

lim
𝑟𝑟→𝑟𝑟𝑠𝑠

𝐸𝐸𝑟𝑟 = ∞ 

These results provide a much clearer and more intuitive understanding of why a falling probe can never reach the event horizon. Any 

SR aficionado knows that boosting a material object to the speed of light requires infinite energy, and is therefore fundamentally 

impossible. The same limitation exists for falling probes. Under no circumstances will the local conditions of spacetime curvature 

allow a falling probe to achieve the speed of light. 

Traditional analysis of the onboard perspective 

While the fixed perspective provides a clear picture of the motion of a falling probe, the onboard analysis paints an entirely different 

picture. The onboard observer records the motion of the probe as a succession of events occurring at the same location. Thus, the 

analysis must be repeated using proper time 𝜏𝜏 instead of coordinate time 𝑡𝑡. The appropriate equations of motion for this purpose are 

equations (32) and (34) as derived in Appendix A. 

 𝐻𝐻 = 𝑟𝑟2 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (23) 

 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= 2𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟
− 𝐻𝐻2

𝑟𝑟2
+ 𝑟𝑟𝑠𝑠𝐻𝐻2

𝑟𝑟3
 (24) 

At 𝜏𝜏 = 0, the probe is released directly toward the black hole from point 𝑟𝑟 = 𝑎𝑎 with an initial local velocity 𝑣𝑣𝑎𝑎. Releasing the probe in 

a direct line toward the black hole equates to the initial condition 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0, thus 𝐻𝐻 = 0. 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= 2𝑄𝑄 +
𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟

 

Take the square root of both sides, choose the negative sign for the inward path, and separate the variables. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −�2𝑄𝑄 +
𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟

 

𝑑𝑑𝑑𝑑 = −
𝑑𝑑𝑑𝑑

�2𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟

 

𝜏𝜏(𝑟𝑟) = �
𝑟𝑟𝑟𝑟𝑟𝑟

�2𝑄𝑄𝑟𝑟2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟

𝑎𝑎

𝑟𝑟
 

Similar to the Newtonian solution, 𝜏𝜏(𝑟𝑟) assumes one of three forms, depending on the value of 𝑄𝑄. 

 
𝜏𝜏(𝑟𝑟) = 1

2𝑄𝑄
��2𝑄𝑄𝑎𝑎2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑎𝑎 − �2𝑄𝑄𝑟𝑟2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟�

+ 𝑐𝑐2𝑟𝑟𝑠𝑠
2(2𝑄𝑄)3/2 ln �2�2𝑄𝑄�2𝑄𝑄𝑟𝑟

2+𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟+4𝑄𝑄𝑄𝑄+𝑐𝑐2𝑟𝑟𝑠𝑠
2�2𝑄𝑄�2𝑄𝑄𝑎𝑎2+𝑐𝑐2𝑟𝑟𝑠𝑠𝑎𝑎+4𝑄𝑄𝑄𝑄+𝑐𝑐2𝑟𝑟𝑠𝑠

�
 for 𝑄𝑄 > 0 (25) 

 𝜏𝜏(𝑟𝑟) = 2
3𝑐𝑐�𝑟𝑟𝑠𝑠

�𝑎𝑎3/2 − 𝑟𝑟3/2� for 𝑄𝑄 = 0 (26) 
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𝜏𝜏(𝑟𝑟) = 1

(−2𝑄𝑄)
��2𝑄𝑄𝑟𝑟2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟 − �2𝑄𝑄𝑎𝑎2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑎𝑎�

+ 𝑐𝑐2𝑟𝑟𝑠𝑠
2(−2𝑄𝑄)3/2 �cos−1 �−4𝑄𝑄𝑄𝑄

𝑐𝑐2𝑟𝑟𝑠𝑠
− 1� − cos−1 �−4𝑄𝑄𝑄𝑄

𝑐𝑐2𝑟𝑟𝑠𝑠
− 1��

 for 𝑄𝑄 < 0 (27) 

All three forms behave well throughout the domain 𝑎𝑎 ≥ 𝑟𝑟 ≥ 0. Unlike coordinate time 𝑡𝑡 measured by the fixed observer, proper time 

𝜏𝜏 measured by the onboard observer does not diverge to infinity anywhere along the path. This simple fact is the most compelling and 

seemingly irrefutable evidence that the probe will fall smoothly across the event horizon. Because there appears to be a smooth geodesic 

connecting the point of release all the way to the center of the black hole, it seems reasonable that the motion of the falling probe must 

also be smooth and uninterrupted. This interpretation is illustrated graphically in FIG. 2. 

 Fig. 2. Probe’s motion from the onboard perspective. 

Corrected analysis of the onboard perspective 

The traditional analysis of the onboard perspective, as presented in the prior section, seems intuitively correct. However, while the 

mathematical analysis is correct, the corresponding interpretation is not. In this section, I correct the interpretation with a new model 

that reconciles perfectly with that of the fixed perspective. 

The key to correctly interpreting the onboard perspective is that equations (23) and (24) are valid only when 𝑟𝑟 > 𝑟𝑟𝑠𝑠. Recall that proper 

time 𝜏𝜏 is defined only in this exterior region, and any relationships that depend on 𝜏𝜏 cannot be applicable anywhere else. Timelike 

geodesics parameterized by proper time 𝜏𝜏 are only possible where 𝑟𝑟 > 𝑟𝑟𝑠𝑠. When 𝑟𝑟 < 𝑟𝑟𝑠𝑠, geodesics must be parameterized by proper 

distance 𝜎𝜎, and are therefore spacelike. Thus, what appear to be smooth paths from 𝑟𝑟 = 𝑎𝑎 to 𝑟𝑟 = 0 are really composite paths made up 

of timelike geodesics where 𝑟𝑟 > 𝑟𝑟𝑠𝑠, joined with spacelike geodesics where 𝑟𝑟 < 𝑟𝑟𝑠𝑠. In FIG. 2, timelike geodesics are depicted in blue, 

while spacelike geodesics are depicted in red. 

Spacelike geodesics do not depend in any way on proper time 𝜏𝜏. Therefore, while equations (25), (26), and (27) are correct, they only 

apply when 𝑟𝑟 > 𝑟𝑟𝑠𝑠 and cannot be the basis for conclusions applicable to any other region5. They certainly don’t tell us that the probe 

crosses the event horizon. What these equations tell us, and ALL they tell us, is that proper time 𝜏𝜏, measured by the onboard observer, 

approaches the finite value 𝜏𝜏𝑠𝑠 defined below, as the probe approaches 𝑟𝑟 = 𝑟𝑟𝑠𝑠. 

 
5 Incidentally since equation (1) is valid only when 𝑟𝑟 > 𝑟𝑟𝑠𝑠, as per equation (19), the same restriction applies to everything derived in 

Appendix A. 
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lim
𝑟𝑟→𝑟𝑟𝑠𝑠

𝜏𝜏 = 𝜏𝜏𝑠𝑠 = �
𝑟𝑟𝑟𝑟𝑟𝑟

�2𝑄𝑄𝑟𝑟2 + 𝑐𝑐2𝑟𝑟𝑠𝑠𝑟𝑟

𝑎𝑎

𝑟𝑟𝑠𝑠
 

This result is reasonable and easy to understand at a qualitative level. The probe is subject to two strong time dilation effects: one due 

to its close proximity to the event horizon, and another due to the fact that it is moving at nearly the speed of light relative to a fixed 

observer at that location. These two effects working together reduce the rate of change of 𝜏𝜏 so severely that it cannot achieve the value 

of 𝜏𝜏𝑠𝑠. 

It is also worth noting that were it possible for the probe to actually reach the event horizon, the rate of change of 𝜏𝜏 would fall off to 

zero. Because 𝑑𝑑𝑑𝑑 = 0 when 𝑟𝑟 = 𝑟𝑟𝑠𝑠, the clock onboard the probe would stop dead at the value of 𝜏𝜏𝑠𝑠, and the onboard observer would 

lose all awareness of the flow of time. This is another confirmation that a probe cannot reach the event horizon. 

Falling probe thought experiment 

Thus far, analysis of the falling probe has been based on arguments supported by technical explanations and has been replete with an 

abundance of equations. This can be somewhat overwhelming, so I conclude the topic with a simple thought experiment. 

Imagine an observer at a fixed location 𝑟𝑟 = 𝑎𝑎. At 𝑡𝑡 = 0 a probe is released directly toward a black hole with an arbitrary initial velocity. 

The probe is equipped with a transmitter emitting a continuous signal that the observer monitors to track the probe’s motion. 

As the probe falls away, the signal received weakens and becomes increasingly delayed as the distance of separation increases. 

Simultaneously, the signal is red-shifted to longer wavelengths. This outcome is due to two time-dilating effects: closer proximity to 

the event horizon, and increased relative velocity between the probe and observer. FIG. 3 graphically depicts this scenario using 

Kruskal–Szekeres coordinates6. 

The blue hyperbolic branch represents the position 𝑟𝑟 = 𝑎𝑎. The line of slope zero equates to time 𝑡𝑡 = 0, whereas the line of slope +1 

equates to time 𝑡𝑡 = ∞. Thus, point 𝑉𝑉 moving along the hyperbolic branch represents the fixed observer as time progresses toward  

𝑡𝑡 = ∞. 

The pink line represents the geodesic that originates from the release of the probe at point 𝑆𝑆. What appears to be a continuous path all 

the way to the green hyperbolic branch at 𝑟𝑟 = 0 is an illusion. The path is actually a combination of two separate geodesics: one outside 

the event horizon which is timelike, and the other inside the event horizon which is spacelike. Because the metric equation is zero at 

𝑟𝑟 = 𝑟𝑟𝑠𝑠, there is no geodesic solution for the event horizon itself. Point 𝑃𝑃 represents the falling probe as it moves along the timelike 

geodesic approaching the event horizon at point 𝑇𝑇. 

The key feature of Kruskal–Szekeres coordinates is that light signals follow straight lines with a slope of ±1, depending on whether 

they are directed inward or outward. Thus, the dashed red line represents the outward signal emitted from the probe at point 𝑃𝑃 and 

received by the fixed observer at point 𝑉𝑉. As expected, the signal is received at 𝑉𝑉 at a later time than it was emitted from 𝑃𝑃. As the 

diagram clearly shows, by the time the signal is received at 𝑉𝑉, the probe has advanced to point 𝑄𝑄. 

The time-honored interpretation of this is that the probe will eventually fall past the event horizon, after which the observer can no 

longer receive the probe’s signal. However, as the diagram clearly shows, this seemingly logical interpretation is incorrect. Line 

segment 𝑃𝑃𝑃𝑃 is always parallel to the 𝑡𝑡 = ∞ line, and until 𝑉𝑉 reaches that line, which it never does, point 𝑄𝑄 will lie between the 𝑡𝑡 = ∞ 

line and the line segment 𝑃𝑃𝑃𝑃, meaning that point 𝑄𝑄 will always lie outside the event horizon. This also means that there is no time 

 
6 Kruskal–Szekeres coordinates are described briefly in Appendix D. 
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𝑡𝑡 < ∞ when the observer loses contact with the probe’s signal. The observer can confidently conclude that the probe remains outside 

the event horizon forever. 

One may argue that Schwarzschild time 𝑡𝑡 is not what the fixed observer actually measures. While this is true, the point is trivial. 

Schwarzschild time 𝑡𝑡 and time 𝑡𝑡𝑝𝑝 measured by the fixed observer are related by equation (39). 

𝑑𝑑𝑡𝑡𝑝𝑝 = �1 −
𝑟𝑟𝑠𝑠
𝑎𝑎
 𝑑𝑑𝑑𝑑 

As the rates of time flow for 𝑡𝑡 and 𝑡𝑡𝑝𝑝 are proportional, 𝑡𝑡 = ∞ is the logical equivalent of 𝑡𝑡𝑝𝑝 = ∞ in all respects. 

 

Fig. 3. Falling probe. 

For those who doggedly insist that the probe must eventually cross the event horizon, one can always rebut, “Maybe so, but it has not 

happened yet". If GR is to be believed, such an event can only occur when time ceases to exist for the fixed observer. If and when that 

happens, the time-dependent laws of physics that we understand today will no longer apply. The fact remains that, as long as the fixed 

observer’s clock continues to run, the probe will remain outside the event horizon.  

Full Reconciliation  
Having introduced this new interpretation, what remains is to demonstrate how it perfectly reconciles with all current observations. 

In related literature, we are told that once a black hole forms, it begins to accrete surrounding matter. As additional matter is drawn 

within the event horizon, the mass of the black hole increases, and the event horizon expands accordingly. This traditional scenario 

makes no sense in light of the prior analysis. 

The accretion process is nothing more than that of external bodies falling into the black hole. Each piece of falling space debris behaves 

exactly like a falling probe. Regardless of when or where each object was released, or how fast it was moving at the time, it can never 

reach the event horizon. Regardless of how long we, as fixed observers, are willing to wait, we will never witness a single piece of 

matter crossing the event horizon. 
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As per equation (2) the size of a black hole is proportional to its mass. However, if nothing ever crosses the event horizon, it cannot 

grow. The black hole is destined to remain the same size forever. The same applies to every black hole supposedly present today. They 

must all be the same size they were when originally formed. This begs the question: How could the alleged black holes have formed 

in the first place? Consider the following thought experiment. 

Dust cloud thought experiment 

Assume the existence of a spherically symmetric body, such as a large dust cloud. Assume also that it is at rest with radius 𝑟𝑟 = 𝑎𝑎, and 

that at 𝑡𝑡 = 0 it is allowed to collapse under its own gravitational influence. In addition, assume that there is no interaction between the 

particles, and thus, no internal pressure or resistance to collapse. What would we observe? 

First, for reasons of symmetry, we expect that each particle will begin to fall directly toward the center. Each particle moves only along 

its own radial, and no angular momentum is imparted to any single particle or the body as a whole. 

Second, we expect the radial motion for all particles at any given radius 𝑟𝑟 < 𝑎𝑎 to share the same time dependence. Particles with 

different radii will behave differently, but all of them at any common radius will behave the same. Therefore, we can consider the dust 

cloud as a set of concentric shells, each maintaining its spherical symmetry. Consequently, in this highly idealized model, we conclude 

that the spherical symmetry of the dust cloud is maintained for all values of 𝑡𝑡 as well. 

A key characteristic of the Schwarzschild metric that has not yet been discussed is its time independence. This property means that the 

metric remains valid even if the distribution of mass is not static, as long as spherical symmetry is maintained. It can be static, 

collapsing, expanding, or oscillating. The effects are identical as long as the spherical symmetry is not disturbed [11]. This means that 

in the current case, the Schwarzschild metric remains valid even though the dust cloud is collapsing. 

The Schwarzschild metric is valid only in the region of space outside the cloud, and as such, it cannot be used to deduce the time 

dependence of the interior particles. However, because it is valid in the exterior region, it is correct for the particles on the outside layer 

of the cloud, and each particle on the surface behaves just like the falling probe previously analyzed. 

Therefore, we observe that the surface falls away at an ever-increasing rate. This rate approaches, but never reaches nor exceeds the 

speed of light. Likewise, the total energy of the body cannot achieve an infinite value. As with the falling probe, we never experience 

an event where it reaches the event horizon. Because a black hole does not form until all of its matter falls within its own Schwarzschild 

radius, we must conclude that the black hole itself never materializes. 

The evolution of black holes 

If black holes are impossible, what really happens when stars die? I am not suggesting that dying stars do not collapse. They do. The 

formation of white dwarfs and neutron stars is well established. In addition, there is strong evidence that beyond a certain mass limit, 

even neutron degeneracy pressure is insufficient to maintain equilibrium. Once their fuel is exhausted, these massive objects may well 

experience uncontrolled collapse. What I am proposing is that even though this is likely so, true black holes never quite materialize 

due to a lack of time. 

Heretofore, the quest to know if black holes exist has always focused on the search for physical limitations that might preclude them. 

Having found none, theorists have conceded that their formation must be inevitable. In contrast, I contend that black hole formation is 

fundamentally impossible, not because of some underlying physical effect, but because of the self-regulating nature of spacetime itself. 
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As a body collapses toward its own critical radius, the process slows down owing to the effect of time dilation. As the collapse proceeds, 

time dilation increases accordingly, further retarding the process. This tug of war continues indefinitely in such a way that ever-

increasing time dilation prevents the ultimate completion of the collapsing process, regardless of the details of that process. 

From a local perspective, collapse proceeds at a normal rate. From an external, fixed perspective, it is virtually frozen in time. Activities 

requiring only nanoseconds at the local level may well equate to billions of years from our external perspective. These two perspectives 

are entirely consistent with each other where the principles of GR are concerned. In neither case does the process of gravitational 

collapse achieve full completion. 

What really happens is that the surface begins a race toward the Schwarzschild radius that it cannot win. As measured by fixed 

observers, the rate of collapse quickly approaches the speed of light. Because the surface is receding at nearly the speed of light, signals 

originating on the surface become so red-shifted that they are undetectable. At the same time, the position of the surface will approach 

the Schwarzschild radius so closely that fixed observers’ instruments will be unable to discern the difference. Consequently, the 

collapsing object will assume the effective nature of a black hole, without actually achieving that true state. Given the age of the 

universe, I expect that this scenario has played out literally billions of times. 

Undoubtedly critics will be tempted to dismiss my ideas on the basis that we have already discovered black holes, including one at the 

center of our galaxy. But hang on. What is it that we really know? We know, due to the orbital motion of nearby stars, that there is an 

extremely massive body there, perhaps on the order of a million solar masses. We also know that this body is not detectable by existing 

radio telescopes because it is too small to be resolved and/or its illumination is too red-shifted to be detected. However, the conclusion 

that it is a genuine black hole is an inference, based on the belief that the current theory is correct. Indeed, if the current theory were 

correct, these observations are precisely what we would expect. 

However, the model I have proposed yields precisely the same predictions. The spacetime curvature of empty space surrounding a 

spherically symmetric, non-rotating body that is only infinitesimally larger than its Schwarzschild radius will be the same in every way 

as that of an actual black hole. This is the salient point. The effects of either of these two models outside the Schwarzschild radius will 

be identical in every respect; not similar but identical. This includes gravitational effects on other bodies, the deflection of light, 

gravitational lensing, time dilation, and gravitational waves. There are simply no observational effects in the exterior region that can 

differentiate between the two models. My new interpretation predicts differences only with respect to the conditions on or inside the 

Schwarzschild radius. The validity of either model can be confirmed only by observations made within this critical radius. How or 

when it may be possible to collect such observational data is anyone’s guess. 

Interior solution 

Although the surface of a collapsing star cannot fall within its own Schwarzschild radius, it will approach that location asymptotically. 

This finding suggests that there is a potential dilemma. I stated earlier that the region 𝑟𝑟 ≤ 𝑟𝑟𝑠𝑠 does not apply to GR analysis. The fact 

that most of a collapsing star lies inside its Schwarzschild radius raises the question of whether it is possible to analyze the conditions 

in that region. However, when one considers the interior solution of the Schwarzschild metric, 𝑟𝑟𝑠𝑠 no longer plays the role of a critical 

radius. A singular condition exists only if the Schwarzschild radius is exposed outside the actual surface of the star, a so-called naked 

singularity. 

Most of the preceding analysis has been based on the Schwarzschild metric as defined by equation (1). It is important to understand 

that this metric, although it is an exact solution, is valid only in the region of free space surrounding the body of matter. The conditions 

inside the body are governed by an entirely different solution. Thus, investigating the conditions inside a collapsing star is not the same 

as investigating those inside an event horizon. 
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Because relativistic solutions always reduce to Newtonian results when the velocities are small and gravitational fields are weak, one 

can usually gain insight from Newtonian solutions. The Newtonian solution for the gravitational potential exterior to a spherically 

symmetric body with radius 𝑟𝑟 = 𝑅𝑅 is given by the following equation. 

𝑔𝑔(𝑟𝑟) =
𝐺𝐺𝐺𝐺
𝑟𝑟
 where 𝑟𝑟 ≥ 𝑅𝑅 

A singularity occurs at 𝑟𝑟 = 0, but this is a nonissue given that the equation is valid only when 𝑟𝑟 ≥ 𝑅𝑅. The interior solution is quite 

different and is dependent on the mass density as a function of r. When the mass density is constant, the solution is very simple [12]. 

𝑔𝑔(𝑟𝑟) =
𝐺𝐺𝐺𝐺
𝑅𝑅

 where 𝑟𝑟 ≤ 𝑅𝑅 

Similar to the Newtonian solution, the relativistic solution for the interior region can only be derived if one knows the mass density as 

a function of 𝑟𝑟. This value, in turn, depends on the relationship between density and internal pressure. Unfortunately, these relationships 

are not simple, and there is no generalized solution. 

However, if one assumes that the density is constant, it is possible to derive an exact result. Although this result is not particularly 

useful in defining the actual conditions inside a real star, it does serve to illustrate those conditions at a qualitative level. The following 

is the metric equation for the interior region 0 ≤ 𝑟𝑟 ≤ 𝑅𝑅, given constant density [13]. 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �3
2�1 − 𝑟𝑟𝑠𝑠

𝑅𝑅
− 1

2
�1 − 𝑟𝑟𝑠𝑠𝑟𝑟2

𝑅𝑅3
�
2

𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑟𝑟2

�1−𝑟𝑟𝑠𝑠𝑟𝑟
2

𝑅𝑅3
�
− 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃𝜃𝜃𝜙𝜙2 (28) 

The reader can quickly verify that this result is identical to equation (1) when evaluated at 𝑟𝑟 = 𝑅𝑅. Similar to the Newtonian solution, 

this is a necessary condition. Examination of equation (28) in the region 0 ≤ 𝑟𝑟 ≤ 𝑅𝑅 reveals several important points. 

• None of the metric components exhibits a singularity anywhere in the region. In particular, no singularity occurs at either  

𝑟𝑟 = 𝑟𝑟𝑠𝑠 or at 𝑟𝑟 = 0. There is no true singularity at the center of the black hole as predicted by the current model. 

• The manifold signature is (1,3) for all values of 𝑟𝑟. Thus, the metric characterizes a Lorentz manifold. 

• The metric component of the 𝑑𝑑𝑡𝑡2 term, 𝑔𝑔00 is always greater than zero; thus, proper time is real and nonzero for all values of 

𝑟𝑟. Geodesic coordinates therefore correspond to Minkowski space throughout the region. 

Combining these results with those of previous sections leads to the following generalized principle: as long as the surface of the 

collapsing star remains outside the Schwarzschild radius, as it must, no singular condition is encountered. Local Minkowski frames of 

reference can be established and the principles of GR remain valid at all physical locations both inside and outside the star. Of course, 

this is based on the assumption that the mass density of the star is constant, but there is no reason to expect that the qualitative result is 

different for any other case. 

Those who are still unnerved by the idea that proper time on the falling probe approaches a finite limit as it nears the event horizon 

need not be concerned. In this scenario, the probe will always come into contact with the surface of the star before it reaches the 

Schwarzschild radius. At that point, the metric solution for the interior kicks in, and the onboard clock continues to move forward as 

normal. The onboard clock never stops. 

Conclusion 

What I have done is introduce a new model for how spacetime curvature affects the motion of material objects near the Schwarzschild 

radius. To be clear, the mathematical analysis is not in question. Instead, the model is based on a fresh interpretation of well-vetted 
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mathematical results. I have shown that although the Schwarzschild metric characterizes a smooth pseudo-Riemannian manifold, only 

the subset of that manifold lying in the external region 𝑟𝑟 > 𝑟𝑟𝑠𝑠 qualifies for GR analysis because only that region is time-orientable. 

Proper time is undefined elsewhere. 

Existing theory predicts that a free-falling probe will pass smoothly through the event horizon. This prediction seems irrefutable, given 

that a smooth geodesic can be derived from any point in the manifold to the origin. However, only that portion of the geodesic lying 

outside the event horizon can be employed to track the motion of the probe. The arc length of the geodesic inside the event horizon 

does not correspond to proper time. 

This leads to a far more reasonable interpretation of the probe’s behavior. Owing to the severe curvature of space and time, a probe 

never crosses the event horizon. This interpretation reconciles precisely with that of any fixed observer. 

The Schwarzschild radius may not be a true singularity, but it is a demarcation between timelike and spacelike regions and is therefore 

an asymptotic choke point where the principles of GR are concerned. This is best understood as a fundamental principle. In the same 

way that SR precludes speeds equal to or greater than that of light, the principles of GR do not allow motion to extend beyond the 

boundaries of the external, time-orientable region. 

Extending this logic leads to an even more important result. Instead of predicting the formation of black holes, the exact opposite is 

true. The same extreme curvature of space and time that prevents a free-falling probe from crossing the event horizon prevents any 

object from collapsing inside its own Schwarzschild radius. All the external effects of such objects are identical in every way to true, 

theoretical black holes. Thus, objects that appear to be black holes are those that have collapsed so closely to that state that we cannot 

tell the difference with external measurements. 

In effect, GR predicts that there is a fundamental and absolute limit to the density of any material object. This conclusion has 

cosmological implications. If we run the clock backward, we may discover that the Big Bang did not originate from a singularity after 

all. Perhaps it originated from a timeless state of maximally compressed pure energy. Perhaps time itself began only at that moment 

when this maximally compressed energy began uncontrolled expansion toward the universe that we know today. 
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Appendix A 

Falling probe equations of motion 

A free-falling probe follows a timelike geodesic, which can be derived using variational methods [14]. Begin with the Schwarzschild 

metric equation (1) and divide by d𝜏𝜏2 to obtain the appropriate Lagrangian function. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 −
𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 −

𝑑𝑑𝑟𝑟2

�1 − 𝑟𝑟𝑠𝑠
𝑟𝑟�

− 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 

 𝐿𝐿 = 𝑐𝑐2 = �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
2
− 1

�1−𝑟𝑟𝑠𝑠𝑟𝑟 �
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
− 𝑟𝑟2 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
2
− 𝑟𝑟2sin2𝜃𝜃  �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
2
 (29) 

Apply the Euler-Lagrange equation with respect to 𝜃𝜃. 

𝑑𝑑
𝑑𝑑𝑑𝑑
�

∂𝐿𝐿
∂(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)� =

∂𝐿𝐿
∂𝜃𝜃

 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑟𝑟2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝑟𝑟2sin𝜃𝜃cos𝜃𝜃  �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

 

Orient the coordinate system such that 𝜃𝜃 = 𝜋𝜋/2 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0 when 𝜏𝜏 = 0. From this result, it is evident that these initial values are 

valid solutions for all 𝜏𝜏. Therefore, motion is confined to the plane defined by 𝜃𝜃 = 𝜋𝜋/2, and the problem is reduced to two spatial 

dimensions. Substitute these values into equation (29). 

 𝐿𝐿 = 𝑐𝑐2 = �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
2
− 1

�1−𝑟𝑟𝑠𝑠𝑟𝑟 �
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
− 𝑟𝑟2 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
2
 (30) 

Apply the Euler-Lagrange equation with respect to 𝑡𝑡. 

𝑑𝑑
𝑑𝑑𝑑𝑑
�

∂𝐿𝐿
∂(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)� =

∂𝐿𝐿
∂𝑡𝑡

 

𝑑𝑑
𝑑𝑑𝑑𝑑
��1 −

𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 0 

Define relativistic total energy per unit mass 𝑇𝑇 as follows. Because its derivative is zero, 𝑇𝑇 is a constant of motion that can be determined 

from initial conditions. 

 𝑇𝑇 = �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 (31) 

Apply the Euler-Lagrange equation with respect to 𝜙𝜙. 

𝑑𝑑
𝑑𝑑𝑑𝑑
�

∂𝐿𝐿
∂(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)� =

∂𝐿𝐿
∂𝜙𝜙

 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑟𝑟2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 0 

Define relativistic angular momentum per unit mass 𝐻𝐻 as follows. Because its derivative is zero, 𝐻𝐻 is a constant of motion that can be 

determined from initial conditions. 
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 𝐻𝐻 = 𝑟𝑟2 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (32) 

Use equations (31) and (32) to eliminate 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 from equation (30) and solve for 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= �
𝑇𝑇2

𝑐𝑐2
− 𝑐𝑐2� +

𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟

−
𝐻𝐻2

𝑟𝑟2
+
𝑟𝑟𝑠𝑠𝐻𝐻2

𝑟𝑟3
 

As a matter of convenience, define an equivalent constant 𝑄𝑄 as follows. 

 𝑄𝑄 = 1
2
�𝑇𝑇

2

𝑐𝑐2
− 𝑐𝑐2� (33) 

 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= 2𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠
𝑟𝑟
− 𝐻𝐻2

𝑟𝑟2
+ 𝑟𝑟𝑠𝑠𝐻𝐻2

𝑟𝑟3
 (34) 

Equations (31), (32), and (34) fully describe the motion of the probe relative to proper time 𝜏𝜏. Equation (34) is an ordinary differential 

equation that can, in principle, be solved for 𝑟𝑟(𝜏𝜏). The result can then be used in equations (31) and (32) to solve for 𝑡𝑡(𝜏𝜏) and 𝜙𝜙(𝜏𝜏) 

respectively. Recall that 𝜃𝜃 = 𝜋𝜋/2 for all 𝜏𝜏. 

To track the motion from the perspective of a fixed observer, 𝑟𝑟 and 𝜙𝜙 must be expressed as functions of coordinate time 𝑡𝑡 rather than 

proper time 𝜏𝜏. Use the chain rule in conjunction with equation (31) to express 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 in terms of 𝑡𝑡. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑇𝑇

𝑐𝑐2 �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑇𝑇

𝑐𝑐2 �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

Substitute these expressions into equations (32) and (34) and simplify. 

 𝐻𝐻 = 𝑇𝑇𝑟𝑟2

𝑐𝑐2�1−𝑟𝑟𝑠𝑠𝑟𝑟 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (35) 

 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

= 𝑐𝑐4

𝑇𝑇2
�1 − 𝑟𝑟𝑠𝑠

𝑟𝑟
�
2
�2𝑄𝑄 + 𝑐𝑐2𝑟𝑟𝑠𝑠

𝑟𝑟
− 𝐻𝐻2

𝑟𝑟2
+ 𝑟𝑟𝑠𝑠𝐻𝐻2

𝑟𝑟3
� (36) 

Equations (35) and (36) fully describe the probe’s motion relative to coordinate time 𝑡𝑡. Equation (36) is an ordinary differential 

equation that can, in principle, be solved for 𝑟𝑟(𝑡𝑡). The result can then be used in equation (35) to solve for 𝜙𝜙(𝑡𝑡). Recall that 𝜃𝜃 = 𝜋𝜋/2 

for all 𝑡𝑡. 

Appendix B 

Initial conditions 

Consider a probe released at time 𝑡𝑡 = 0 from point 𝑃𝑃(𝑟𝑟 = 𝑎𝑎, 𝜃𝜃 = 𝜋𝜋/2,𝜙𝜙 = 0) with velocity components 𝑣𝑣𝑟𝑟  and 𝑣𝑣𝜙𝜙 measured with 

respect to the local frame of reference at 𝑃𝑃. Note that 𝑣𝑣𝜃𝜃 = 0, consistent with the equations of motion derived in Appendix A. Begin 

by transforming to locally flat, geodesic coordinates 𝑡𝑡𝑝𝑝, 𝑥𝑥𝑟𝑟 , 𝑥𝑥𝜃𝜃 , and 𝑥𝑥𝜙𝜙, which resolve to the Lorentz metric 𝜂𝜂𝜇𝜇𝜇𝜇 at point 𝑃𝑃. 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = 𝑐𝑐2𝑑𝑑𝑡𝑡𝑝𝑝
2 − 𝑑𝑑𝑥𝑥𝑟𝑟

2 − 𝑑𝑑𝑥𝑥𝜃𝜃
2 − 𝑑𝑑𝑥𝑥𝜙𝜙

2 (37) 
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Apply the initial conditions of reference point 𝑃𝑃(𝑟𝑟 = 𝑎𝑎, 𝜃𝜃 = 𝜋𝜋/2,𝜙𝜙 = 0) to equation (1). 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝑟𝑟𝑠𝑠
𝑎𝑎
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑟𝑟2

�1−𝑟𝑟𝑠𝑠𝑎𝑎 �
− 𝑎𝑎2𝑑𝑑𝜃𝜃2 − 𝑎𝑎2𝑑𝑑𝜙𝜙2 (38) 

Equations (37) and (38) are equivalent. Thus, the following coordinate relationships are self-evident. 

 𝑑𝑑𝑡𝑡𝑝𝑝 = �1 − 𝑟𝑟𝑠𝑠
𝑎𝑎
 𝑑𝑑𝑑𝑑 (39) 

 𝑑𝑑𝑥𝑥𝑟𝑟 = 𝑑𝑑𝑑𝑑

�1−𝑟𝑟𝑠𝑠𝑎𝑎

 

 𝑑𝑑𝑥𝑥𝜃𝜃 = 𝑎𝑎 𝑑𝑑𝑑𝑑 

 𝑑𝑑𝑥𝑥𝜙𝜙 = 𝑎𝑎 𝑑𝑑𝑑𝑑  

Determine the local velocity components in terms of 𝑡𝑡, 𝑟𝑟, 𝜃𝜃, and 𝜙𝜙. 

 𝑣𝑣𝑟𝑟 = 𝑑𝑑𝑥𝑥𝑟𝑟
𝑑𝑑𝑡𝑡𝑝𝑝

= 𝑑𝑑𝑑𝑑

�1−𝑟𝑟𝑠𝑠𝑎𝑎

1

�1−𝑟𝑟𝑠𝑠𝑎𝑎 𝑑𝑑𝑑𝑑
= 1

�1−𝑟𝑟𝑠𝑠𝑎𝑎 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (40) 

 𝑣𝑣𝜃𝜃 = 𝑑𝑑𝑥𝑥𝜃𝜃
𝑑𝑑𝑡𝑡𝑝𝑝

= 𝑎𝑎 𝑑𝑑𝑑𝑑 1

�1−𝑟𝑟𝑠𝑠𝑎𝑎 𝑑𝑑𝑑𝑑
= 𝑎𝑎

�1−𝑟𝑟𝑠𝑠𝑎𝑎

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 𝑣𝑣𝜙𝜙 = 𝑑𝑑𝑥𝑥𝜙𝜙
𝑑𝑑𝑡𝑡𝑝𝑝

= 𝑎𝑎 𝑑𝑑𝑑𝑑 1

�1−𝑟𝑟𝑠𝑠𝑎𝑎 𝑑𝑑𝑑𝑑
= 𝑎𝑎

�1−𝑟𝑟𝑠𝑠𝑎𝑎

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  

Apply the initial condition 𝑟𝑟 = 𝑎𝑎 to equation (35) and use equation (40) to eliminate 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. 

𝐻𝐻 =
𝑇𝑇𝑎𝑎2

𝑐𝑐2 �1 − 𝑟𝑟𝑠𝑠
𝑎𝑎�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 𝐻𝐻 = 𝑇𝑇𝑇𝑇𝑣𝑣𝜙𝜙

𝑐𝑐2�1−𝑟𝑟𝑠𝑠𝑎𝑎

 (41) 

Apply the initial condition 𝑟𝑟 = 𝑎𝑎 to equation (36) and rearrange. 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

=
𝑐𝑐4

𝑇𝑇2
�1 −

𝑟𝑟𝑠𝑠
𝑎𝑎
�
2
�2𝑄𝑄 +

𝑐𝑐2𝑟𝑟𝑠𝑠
𝑎𝑎

−
𝐻𝐻2

𝑎𝑎2
+
𝑟𝑟𝑠𝑠𝐻𝐻2

𝑎𝑎3
� 

𝑇𝑇2

𝑐𝑐4 �1 − 𝑟𝑟𝑠𝑠
𝑎𝑎�

2 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+ �1 −
𝑟𝑟𝑠𝑠
𝑎𝑎
�
𝐻𝐻2

𝑎𝑎2
= 2𝑄𝑄 +

𝑐𝑐2𝑟𝑟𝑠𝑠
𝑎𝑎

 

Use equations (33), (40), and (41) to eliminate 𝑄𝑄, 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, and 𝐻𝐻 respectively. 

𝑇𝑇2

𝑐𝑐4
�𝑣𝑣𝑟𝑟2 + 𝑣𝑣𝜙𝜙2� =

𝑇𝑇2

𝑐𝑐2
− 𝑐𝑐2 +

𝑐𝑐2𝑟𝑟𝑠𝑠
𝑎𝑎

 

Because 𝑣𝑣𝜃𝜃 = 0, 𝑣𝑣𝑟𝑟2 + 𝑣𝑣𝜙𝜙2 = 𝑣𝑣𝑎𝑎2, where 𝑣𝑣𝑎𝑎 is the magnitude of the probe’s velocity measured locally at 𝑟𝑟 = 𝑎𝑎. 

𝑇𝑇2𝑣𝑣𝑎𝑎2

𝑐𝑐4
=
𝑇𝑇2

𝑐𝑐2
− 𝑐𝑐2 +

𝑐𝑐2𝑟𝑟𝑠𝑠
𝑎𝑎
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 𝑇𝑇 =
𝑐𝑐2�1−𝑟𝑟𝑠𝑠𝑎𝑎

�1−𝑣𝑣𝑎𝑎
2

𝑐𝑐2

 (42) 

Use equation (42) to eliminate 𝑇𝑇 from equation (41). 

 𝐻𝐻 = 𝑎𝑎𝑣𝑣𝜙𝜙

�1−𝑣𝑣𝑎𝑎
2

𝑐𝑐2

 (43) 

Use equation (42) to eliminate 𝑇𝑇 from equation (33). 

𝑄𝑄 =
1
2 𝑣𝑣𝑎𝑎

2 − 𝑐𝑐2𝑟𝑟𝑠𝑠
2𝑎𝑎

1 − 𝑣𝑣𝑎𝑎2
𝑐𝑐2

 

Use equation (2) to eliminate 𝑟𝑟𝑠𝑠. 

 𝑄𝑄 =
1
2𝑣𝑣𝑎𝑎

2−𝐺𝐺𝐺𝐺𝑎𝑎

1−𝑣𝑣𝑎𝑎
2

𝑐𝑐2

 (44) 

Equations (42), (43), and (44) express the constants of motion in terms of the reference point and the local velocity. A few comments 

are in order regarding the significance of these constants and the forms in which they are expressed: 

• When 𝑣𝑣𝑎𝑎 ≪ 𝑐𝑐, equation (43) reduces to the Newtonian expression for angular momentum 𝐽𝐽/𝑚𝑚. Thus, 𝐻𝐻 is the generalized 

form of relativistic angular momentum per unit mass. 

• When 𝑟𝑟𝑠𝑠 = 2𝐺𝐺𝐺𝐺/𝑐𝑐2 = 0 or 𝑎𝑎 ≫ 𝑟𝑟𝑠𝑠 , equation (42) reduces to SR total energy 𝐸𝐸/𝑚𝑚. Thus, 𝑇𝑇 is the generalized form of 

relativistic energy per unit mass. 

• When 𝑣𝑣𝑎𝑎 ≪ 𝑐𝑐, equation (44) reduces to the Newtonian expression for the probe’s total energy per unit mass in a gravitational 

field. Thus, 𝑄𝑄 is the generalized form for relativistic energy per unit mass in a gravitational field. 

• 𝑇𝑇 and 𝑄𝑄 depend only on the velocity 𝑣𝑣𝑎𝑎 and radial location 𝑎𝑎. This is consistent with the corresponding Newtonian values in 

that they do not depend on the individual velocity components or angular momentum. 

• Significant qualitative behavior of the probe can be obtained directly from equation (44). Since 𝑣𝑣 < 𝑐𝑐 for all material objects, 

the denominator is always positive. Therefore, the sign of Q is determined by the numerator. If 𝑄𝑄 < 0, then the motion is 

bound. If 𝐻𝐻 = 0, then the maximum value of 𝑟𝑟 occurs when 𝑣𝑣 = 0. 

𝑟𝑟max = 𝐺𝐺𝐺𝐺(−𝑄𝑄) 

If 𝑄𝑄 > 0, the motion is unbounded, and terminal velocity 𝑣𝑣 occurs as 𝑟𝑟 approaches infinity. 

𝑣𝑣term = �
2𝑄𝑄

1 + 2𝑄𝑄/𝑐𝑐2
 

The case of 𝑄𝑄 = 0 leads to a definition of escape velocity. 

𝑣𝑣esc = �2𝐺𝐺𝐺𝐺
𝑟𝑟
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This expression is identical to that of the Newtonian solution. However, it must be noted that 𝑣𝑣 is measured in terms of the 

local coordinate system at radial position 𝑟𝑟. 

• Because equation (33) defines 𝑄𝑄 directly in terms of 𝑇𝑇, these two values represent alternate aspects of the same thing, namely 

energy per unit mass. The choice of which to use is clearly a matter of preference and should be dictated by the context. Where 

both terms appear in the same expression, one must remain aware of the fact that they are directly related, and thus are not 

independent constants of motion. 

• Many authors include the mass of the probe in the definition of these constants. Expressing them as per unit mass values 

eliminates the probe’s mass from the equations of motion. This emphasizes that the motion of a probe in a gravitational field 

is completely independent of its mass. 

Appendix C 

Gullstrand–Painlevé coordinates 

To transformation to Gullstrand–Painlevé coordinates, begin with the Schwarzschild metric equation (1). 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑟𝑟2

�1−𝑟𝑟𝑠𝑠𝑟𝑟 �
− 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 (45) 

Define a new time coordinate 𝑡̂𝑡. 

𝑡̂𝑡 = 𝑡𝑡 +
𝑟𝑟𝑠𝑠
𝑐𝑐
�2�

𝑟𝑟
𝑟𝑟𝑠𝑠
− ln �

√𝑟𝑟𝑟𝑟𝑠𝑠
+ 1

√𝑟𝑟𝑟𝑟𝑠𝑠
− 1

�� 

𝑑𝑑𝑡̂𝑡 = 𝑑𝑑𝑑𝑑 +
�𝑟𝑟𝑠𝑠𝑟𝑟

𝑐𝑐 �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟�

𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑡̂𝑡 −
�𝑟𝑟𝑠𝑠𝑟𝑟

𝑐𝑐 �1 − 𝑟𝑟𝑠𝑠
𝑟𝑟�

𝑑𝑑𝑑𝑑 

Substitute directly into equation (45) and simplify. 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 −
𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 − 2�

𝑟𝑟𝑠𝑠
𝑟𝑟
𝑐𝑐 𝑑𝑑𝑡̂𝑡 𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑟𝑟2 − 𝑟𝑟2𝑑𝑑𝜃𝜃2 − 𝑟𝑟2sin2𝜃𝜃 𝑑𝑑𝜙𝜙2 

None of the terms in this form diverges to infinity at 𝑟𝑟 = 𝑟𝑟𝑠𝑠, thus the component singularity has been eliminated. 

However, note that the transformation does not change the fact that the location 𝑟𝑟 = 𝑟𝑟𝑠𝑠 is a demarcation between timelike and spacelike 

regions in the manifold. In particular, note what happens when the distance infinitesimals are set to zero. 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 0 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 −
𝑟𝑟𝑠𝑠
𝑟𝑟
� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 

𝑑𝑑𝑑𝑑 = �1 −
𝑟𝑟𝑠𝑠
𝑟𝑟
 𝑑𝑑𝑡̂𝑡 
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Thus, as with the Schwarzschild metric, proper time is defined as a real, nonzero value only when 𝑟𝑟 > 𝑟𝑟𝑠𝑠. The region 𝑟𝑟 ≤ 𝑟𝑟𝑠𝑠 is no more 

accessible to GR analysis than when using the Schwarzschild metric. 

It is also instructive to observe how this transformation process applies to the rotating frame of reference illustration. Begin with 

equation (12). 

 𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 − 𝜌𝜌2

𝜌𝜌𝑜𝑜2
� 𝑐𝑐2𝑑𝑑𝑡̂𝑡2 − 1

�1−𝜌𝜌
2

𝜌𝜌𝑜𝑜2
�
𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 (46) 

Define a new time coordinate 𝑡𝑡. 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑡̂𝑡 +
� 𝜌𝜌

2

𝑐𝑐𝜌𝜌𝑜𝑜
�

�1 − 𝜌𝜌2
𝜌𝜌𝑜𝑜2
�
𝑑𝑑𝜙𝜙�𝑑𝑑𝑡̂𝑡 = 𝑑𝑑𝑑𝑑 −

� 𝜌𝜌
2

𝑐𝑐𝜌𝜌𝑜𝑜
�

�1 − 𝜌𝜌2
𝜌𝜌𝑜𝑜2
�
𝑑𝑑𝜙𝜙� 

Substitute directly into equation (46). 

𝑐𝑐2𝑑𝑑𝜏𝜏2 = �1 −
𝜌𝜌2

𝜌𝜌𝑜𝑜2
� 𝑐𝑐2𝑑𝑑𝑡𝑡2 − �

2𝑐𝑐𝜌𝜌2

𝜌𝜌𝑜𝑜
� 𝑑𝑑𝑑𝑑 𝑑𝑑𝜙𝜙� − 𝜌𝜌2𝑑𝑑𝜙𝜙�2 − 𝑑𝑑𝜌𝜌2 − 𝑑𝑑𝑧𝑧2 

The reader will undoubtedly recognize this result as shown in equation (11). Thus, this transformation is simply the inverse of the 

derivation step between equations (11) and (12). 

The parallel with Gullstrand–Painlevé coordinates is self-evident. Although the transformation eliminates the component singularity, 

it does not change the analysis of the rotating frame of reference. The Lorentz manifold is still divided into timelike and spacelike 

regions at 𝜌𝜌 = 𝜌𝜌𝑜𝑜, proper time is still defined only when 𝜌𝜌 < 𝜌𝜌𝑜𝑜, and GR analysis is still applicable only when frames of reference are 

moving slower than the speed of light. 

Appendix D 

Kruskal–Szekeres coordinates  

Kruskal-Szekeres coordinates 𝑢𝑢 and 𝑣𝑣 are defined in terms of Schwarzschild coordinates 𝑟𝑟 and 𝑡𝑡 as per the following transformations. 

Coordinates 𝜃𝜃 and 𝜙𝜙 remain unchanged. 

𝑢𝑢 = �
𝑟𝑟
𝑟𝑟𝑠𝑠
− 1 exp �

𝑟𝑟
2𝑟𝑟𝑠𝑠

� cosh �
𝑐𝑐𝑐𝑐
2𝑟𝑟𝑠𝑠

�  when 𝑟𝑟 > 𝑟𝑟𝑠𝑠

𝑣𝑣 = �
𝑟𝑟
𝑟𝑟𝑠𝑠
− 1 exp �

𝑟𝑟
2𝑟𝑟𝑠𝑠

� sinh �
𝑐𝑐𝑐𝑐
2𝑟𝑟𝑠𝑠

�

 

𝑢𝑢 = �1 −
𝑟𝑟
𝑟𝑟𝑠𝑠
 exp �

𝑟𝑟
2𝑟𝑟𝑠𝑠

� sinh �
𝑐𝑐𝑐𝑐
2𝑟𝑟𝑠𝑠

�  when 𝑟𝑟 < 𝑟𝑟𝑠𝑠

𝑣𝑣 = �1 −
𝑟𝑟
𝑟𝑟𝑠𝑠
 exp �

𝑟𝑟
2𝑟𝑟𝑠𝑠

� cosh �
𝑐𝑐𝑐𝑐
2𝑟𝑟𝑠𝑠

�
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The salient properties of the coordinate system are shown in FIG. 4. This diagram shows how coordinates 𝑢𝑢 and 𝑣𝑣 relate to their 

counterparts 𝑟𝑟 and 𝑡𝑡 with 𝜃𝜃 and 𝜙𝜙 suppressed to fixed values. The region 𝑢𝑢 > |𝑣𝑣| corresponds to 𝑟𝑟 > 𝑟𝑟𝑠𝑠. The region 𝑣𝑣 > |𝑢𝑢| corresponds 

to 𝑟𝑟 < 𝑟𝑟𝑠𝑠. Ray 𝑢𝑢 = 𝑣𝑣 corresponds to the event horizon 𝑟𝑟 = 𝑟𝑟𝑠𝑠. 

 

Fig. 4. Kruskal–Szekeres coordinates. 

Constant values of time 𝑡𝑡 correspond to rays of constant slope radiating from the coordinate origin. The ray with slope zero corresponds 

to 𝑡𝑡 = 0. The rays of slope −1 and +1 correspond to times 𝑡𝑡 = −∞ and 𝑡𝑡 = ∞ respectively. Thus a ray sweeping counterclockwise 

from slope −1 to +1 in the region 𝑟𝑟 > 𝑟𝑟𝑠𝑠 corresponds to the passage of time 𝑡𝑡 in a positive direction from 𝑡𝑡 = −∞ to 𝑡𝑡 = ∞. A ray 

sweeping counterclockwise from slope +1 to −1 in the region 𝑟𝑟 < 𝑟𝑟𝑠𝑠 corresponds to the passage of time 𝑡𝑡 in a negative direction from 

𝑡𝑡 = ∞ to 𝑡𝑡 = −∞. 

Constant values of 𝑟𝑟 correspond to hyperbolic branches. The positive hyperbolic branches shown in blue correspond to constant values 

of 𝑟𝑟 in the region 𝑟𝑟 > 𝑟𝑟𝑠𝑠. The positive hyperbolic branch shown in green corresponds to the value 𝑟𝑟 = 0 in the region 𝑟𝑟 < 𝑟𝑟𝑠𝑠. 

The motivating and most significant feature of Kruskal-Szekeres coordinates is that light rays appear on the diagram as straight lines. 

The dashed red line with slope +1 corresponds to a light signal moving away from the origin. The dashed red line with slope −1 

corresponds to a light signal moving toward the origin. 
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