Volume 7 Issue 1

Organic CHEMISTRY

Trade Science Inc.

An Indian Journal Full Paper

OCAIJ, 7(1), 2011 [41-47]

Hardness based quantitative structure toxicity relationship (QSTR) study on a series of aliphatic alcohol derivatives

Dinesh Kumar*, R.N.Singh, Sangeeta Sahu, Vikas Baboo Department of Chemistry, University of Lucknow, Lucknow, U.P., (INDIA) E-mail: kdnsh@rediffmail.com Received: 8th July, 2010 ; Accepted: 18th July, 2010

ABSTRACT

The quantitative structure toxicity relationship of 89 derivatives of alcohol have been studied with the help of total energy, absolute hardness and electronegativity. The alcohols have been divided into four groups. The first group consists of derivatives of amino alcohol, second consists of derivatives of diol, the third and fourth respectively consist of derivatives of halogenated and unsaturated alcohols. A direct relationship between the toxicity of all groups of alcohols and electronegativity has been observed. The QSTR model of all the four sets have been developed. The best QSTR model of first and second set of compounds have correlation coefficient value above 0.94 and 0.7 respectively, which has been derived by combination of all the three descriptors. The best QSTR model of third set and fourth set of compounds have correlation coefficient value above 0.86 and 0.65 respectively, which has been derived by combination of descriptors consisting total energy, absolute hardness and electronegativity. The absolute hardness is one of the most significant descriptor for searching the low toxicity of alcohols. © 2011 Trade Science Inc. - INDIA

INTRODUCTION

QSAR study of phenols with the help of quantum mechanical parameter has recently been made by Singh et al^[1]. They developed QSAR models having high degree of predicted power with correlation coefficient value above 0.88. QSAR^[2-5] has become increasingly helpful in understanding many aspect of chemical biological activity in drug research and pharmacological sciences^[6]. QSAR has gained importance in hydroxyl group of alcohols also. Success of QSAR is not limited to development of new drugs, but also in exploring the toxicological and ecotoxicological characterstic of compound. Recently QSTR study of large number of or-

KEYWORDS

Alcohols; Toxicity; QSTR; Tetrahymena pyriformis; Absolute hardness.

ganic molecules were further studied by Singh et al, using different type of descriptors^[7]. The models provided correlation coefficient above 0.9.

The hydroxyl group of alcohols has wide range of cellular activities and are important target for study of toxicity. In the present work QSTR study of 89 derivative of alcohol, whose toxicity against tetrahymena pyriformis is reported^[8]. has been made. The QSTR study of derivatives of alcohol has been made with the help of quantum mechnical parameter such as, total energy (ET) absolute hardness (η) and electronegativity(χ). The biological toxicity of alcohol derivatives has been reported by four different methods of inhibitory growth concentration^[9-12]. The derivatives accordingly have been

studied in four sets and also indicates a relationship between absolute hardness and inhibitory growth concentration.

EXPERIMENTAL

The study materials of this paper are 89 derivatives of aliphatic alcohol, which have been divided in four sets on the basis of different inhibitory growth measurement. For QSTR prediction, the 3D modeling and geometery optimization of all the compounds have been done with the help of PCModel software using PM3 hamiltonian^[13]. The MOPAC calculations have been performed with WINMOPAC 7.21 software, by applying keywords PM3 Charge=0 Gnorm=0.1, Bonds, Geo-OK, Vectors density. The four sets of compounds are listed in TABLE 1-4. The values of total energy, absolute hardness and electronegativity have been obtained from this software by solving the equations given below and the results are included in TABLE 1-4.

TABLE 1 : Amino alcohols and their observed toxicity (IGCand predicted toxicity against tetrahymena pyriformis

No.	Compounds	IGC ₅₀	$\mathbf{E}_{\mathbf{T}}$	η	χ	1P _{Toxicity}	2P _{Toxicity}
1	2-(Methylamino)ethanol	-1.8202	-44.455	5.955	-3.338	-1.67	-1.692
2	4-Amino-1-butanol	-0.9752	-51.636	6.134	-3.294	-0.875	-0.992
3	2-(Ethylamino)ethanol	-1.6491	-51.605	5.905	-3.347	-1.729	-1.697
4	2-Propylaminoethanol	-1.6842	-58.766	5.896	-3.364	-1.636	-1.607
5	DL-2-Amino-1-pentanol	-0.6718	-58.793	6.119	-3.237	-0.805	-0.788
6	3-Amino-2,2-dimethyl-1- propanol	-0.9246	-58.811	6.123	-3.329	-0.788	-0.938
7	6-Amino-1-hexanol	-0.958	-65.955	6.137	-3.272	-0.61	-0.656
8	DL-2-Amino-1-hexanol	-0.5848	-65.953	6.113	-3.245	-0.701	-0.675
9	DL-2-Amino-3-methyl-1- butanol	-0.5852	-58.795	6.109	-3.214	-0.842	-0.773
10	2-Amino-3,3-dimethyl- butanol	-0.7178	-65.961	6.1	-3.218	-0.749	-0.661
11	2-Amino-3-methyl-1- pentanol	-0.6594	-65.95	6.115	-3.228	-0.695	-0.641
12	2-Amino-4-methyl- pentanol	-0.6191	-65.953	6.097	-3.234	-0.759	-0.696
13	2-(tert-Butylamino)ethanol	-1.673	-65.923	5.893	-3.38	-1.521	-1.501
14	Diethanolamine	-1.7941	-63.781	5.875	-3.485	-1.627	-1.777
15	1,3-Diamino-2-hydroxy- propane	-1.4275	-53.851	5.953	-3.366	-1.512	-1.559
16	N-Methyldiethanol amine	-1.8338	-70.902	5.753	-3.49	-1.956	-1.97
17	3-(Methylamino)-1,2- propanediol	-1.5341	-63.784	5.854	-3.276	-1.704	-1.464
18	Triethanolamine	-1.7488	-90.224	5.735	-3.572	-1.682	-1.774

 IGC_{50} . 50% inhibitory growth concentration, $E_{_{T}}$, η , χ are total energy, absolute hardness, electronegativity

In DFT, the electronegativity, commonly known to

Organic CHEMISTRY An Indian Journal

TABLE 2 : Acetylenic alcohols and diols & their and toxicity (IGC_{50}) and predicted toxicity against tetrahymena pyriformis

No.	Compounds	IGC ₅₀	ET	η	χ	3P _{Toxicity}	4P _{Toxicity}
1	3-Butyn-2-ol	-0.4024	-38.564	6.28	-4.513	-1.038	-1.166
2	1-Pentyn-3-ol	-1.1776	-45.723	6.256	-4.669	-0.222	-0.412
3	2-Pentyn-1-ol	-0.5724	-45.779	5.932	-4.27	-1.516	-1.254
4	2-Penten-4-yn-1-ol	-0.5549	-43.915	4.942	-4.621	-0.456	0.132
5	1-Hexyn-3-ol	0.6574	-45.723	6.256	-4.669	-0.222	-0.412
6	1-Heptyn-3-ol	-0.265	-60.043	6.257	-4.679	0.425	0.286
7	4-Heptyn-3-ol	-0.0336	-60.093	6.049	-4.328	-0.713	-0.498
8	2-Octyn-1-ol	0.1944	-67.259	6.007	-4.328	-0.403	-0.136
9	4-Methyl-1-pentyn-3-ol	-0.0267	-52.887	6.228	-4.64	-0.008	-0.133
10	4-Methyl-1-heptyn-3-ol	0.7426	-67.204	6.205	-4.633	0.585	0.536
11	(±)-1,2-Butanediol	-2.0482	-38.564	6.28	-4.513	-1.038	-1.166
12	(±)-1,3-Butanediol	-2.3013	-54.419	6.919	-3.987	-2.063	-2.144
13	1,4-Butanediol	-2.2365	-54.429	6.917	-3.978	-2.093	-2.166
14	1,2-Pentanediol	-1.6269	-61.581	6.92	-4.044	-1.569	-1.659
15	1,5-Pentanediol	-1.9344	-61.589	6.915	-3.973	-1.799	-1.839
16	2-Methyl-2,4-pentanediol	-1.9531	-68.724	6.915	-3.988	-1.443	-1.464
17	(±)-1,2-Hexanediol	-1.2669	-68.741	6.912	-4.051	-1.238	-1.3
18	1,6-Hexanediol	-1.4946	-68.749	6.922	-3.974	-1.489	-1.505

IGC₅₀. 50% inhibitory growth concentration, $E_{T,}\eta$, χ are total energy, absolute hardness, electronegativity

a chemist, is define as the negative of a partial derivative of energy E of an atomic or molecular system with respect to the number of electrons N with a constant external potential $_{v(r)}^{[14]}$.

 $\mu = -\chi - (\delta E / \delta N)_{v(r)}$

(1)

In accordance with the earlier work of Iczkowski and Margrave,^[15] it should be stated that when assuming a quadratic relationship between E and N and in a finite difference approximation, Eq. 1 may be rewritten as

$$\chi = -\mu = -(IE + EA)/2$$
 (2)

where IE and EA are the vertical ionization energy and electron affinity, respectively, thereby recovering the electronegativity definition of Mulliken.^[16] Moreover, a theoretical justification was provided for Sandersons principle of electronegativity equalization, which states that when two or more atoms come together to form a molecule, their electronegativities become adjusted to the same intermediate value.^[17-19] The absolute hardness η is define as^[20]

 $η = 1/2 (δμ / δN)_{v(r)} = 1/2 (δ2E / δN2)_{v(r)}$ (3) where E is the total enegy, N is the number of electrons of the chemical species, and _{v(r)} is the extenal potential.

TABLE 3 : Halogenated and saturated alcohols and their observed toxicity (IGC $_{50}$) & predicted toxicity against tetrahymena pyriformis

1 2 Bror	noethanol						•
1 2-DI01		-0.3538	-37.783	5.375	-5.677	-1.342	-0.575
2 2-Chlo	roethanol	-1.5343	-39.654	5.804	-4.706	-1.327	-1.489
3 1-Chlo	ro-2-propanol	-1.2446	-46.808	5.799	-4.675	-1.033	-1.2
4 3-Chlo	ro-1-propanol	-1.1622	-46.816	5.809	-4.639	-1.034	-1.242
5 4-Chlo	ro-1-butanol	-0.5329	-53.976	5.817	-4.633	-0.743	-0.905
6 3-Chlo propan	ro-2,2-dimethyl-1- ol	-0.8568	-61.151	5.793	-4.563	-0.446	-0.689
7 6-Chlo	ro-1-hexanol	-0.353	-68.296	5.819	-4.613	-0.157	-0.255
8 8-Chlo	ro-1-octanol	-0.1879	-82.616	5.82	-4.606	0.429	0.412
9 6-Bror	no-1-hexanol	0.5721	-66.426	5.383	-5.563	-0.171	0.622
10 2,3-Di	bromopropanol	-0.9264	-56.975	4.639	-5.251	-0.452	-0.967
11 Methy	l alcohol	-2.6656	-20.788	7.323	-3.815	-2.316	-2.253
12 Ethyl a	llcohol	-1.9912	-27.933	7.116	-3.782	-1.994	-2.155
13 1-Prop	anol	-1.7464	-35.093	7.056	-3.827	-1.692	-1.808
14 2-Prop	anol	-1.8819	-35.088	7.157	-3.881	-1.707	-1.637
15 1-Buta	nol	-1.4306	-42.253	7.023	-3.864	-1.395	-1.447
16 (±)-2-1	Butanol	-1.542	-42.243	7.106	-3.906	-1.407	-1.31
17 2-Metl	ıyl-1-propanol	-1.3724	-42.259	7.063	-3.85	-1.4	-1.431
18 2-Pent	anol	-1.1596	-49.405	7.076	-3.922	-1.11	-0.977
19 3-Pent	anol	-1.2437	-49.402	7.025	-3.897	-1.102	-1.059
20 3-Meth	yl-2-butanol	-0.9959	-49.407	7.082	-3.915	-1.11	-0.981
21 tert-Ar	nylalcohol	-1.1729	-49.432	7.051	-3.855	-1.105	-1.095
22 2-Meth	nyl-1-butanol	-0.9528	-49.415	7.033	-3.875	-1.103	-1.085
23 3-Meth	nyl-1-butanol	-1.0359	-49.417	6.968	-3.814	-1.094	-1.232
24 2,2-Di	methyl-1-propanol	-0.8702	-49.432	7.051	-3.855	-1.105	-1.095
25 2-Meth	nyl-2-propanol	-1.7911	-42.259	7.063	-3.85	-1.4	-1.431
26 1-Hexa	anol	-0.3789	-56.573	6.987	-3.903	-0.804	-0.748
27 3,3-Di	methyl-1-butanol	-0.7368	-56.587	6.927	-3.791	-0.794	-0.965
28 4-Metl	yl-1-pentanol	-0.6372	-56.578	6.982	-3.869	-0.803	-0.803
29 1-Hept	anol	0.105	-63.733	6.977	-3.915	-0.509	-0.402
30 2,4-Di	methyl-3-pentanol	-0.7052	-63.726	6.905	-3.877	-0.499	-0.524

 $IGC_{_{50}}$ 50% inhibitory growth concentration $E_{_{T}}\eta$, χ are total energy, absolute hardness, electronegativity

The operational definition of absolute hardness and electronegativity is given as

 $\eta = 1/2(IE - EA) \tag{4}$

 $\chi = -\mu = -(IE + EA)/2$ (5)

where IE and EA are the ionization energy and electron affinity, respectively, of the chemical species. According to Koopman's theorem, the IP is simply the eigenvalue of HOMO with change of sign and EA is eigenvalue of LUMO with change of sign; hence Eqs. 3 and 4 may be written as

$$=1/2$$
(ε LUMO – ε HOMO)

 $\chi = -\mu = 1/2(\epsilon LUMO + \epsilon HOMO)$

(6) (7)

Full Paper

With regard to QSTR of a chemical system, the total energy also played an important role. The total energy of a molecular system is sum of the total electronic energy (E_{ee}) and the energy energy of the internuclear repulsion (E_{nr}). The total electronic energy of the system is given by^[21]

TE = 1/2 P(H+F)(8)

where P is the density matrix and H is the one-electron matrix.

RESULT AND DISCUSSION

The biological toxicity of alcohol derivatives has been reported by four different parameters. The alcohol derivatives are accordingly divided in four different sets, which is along with their reported biological toxicity are

 TABLE 4 : Unsaturated alcohols and their observed toxicity
 (IGC₅₀) and predicted toxicity against tetrahymena pyriformis

No.	Compounds	IGC ₅₀	ET	η	χ	7P _{Toxicity}	8P _{Toxicity}
1	2-Methyl-3-buten-2-ol	-1.3889	-47.57	5.731	-4.538	-1.271	-1.274
2	4-Pentyn-1-ol	-1.4204	-45.736	6.321	-4.488	-1.505	-1.502
3	2-Methyl-3-butyn-2-ol	-1.3114	-45.731	6.388	-4.59	-1.52	-1.521
4	trans-3-Hexen-1-ol	-0.7772	-54.754	5.335	-4.281	-0.775	-0.772
5	5-Hexyn-1-ol	-1.2948	-52.896	6.315	-4.477	-1.097	-1.095
6	3-Methyl-1-pentyn-3-ol	-1.3226	-52.886	6.374	-4.729	-1.11	-1.119
7	4-Hexen-1-ol	-0.754	-54.754	5.353	-4.293	-0.779	-0.777
8	5-Hexen-1-ol	-0.8411	-54.734	5.602	-4.462	-0.835	-0.838
9	4-Pentyn-2-ol	-1.6324	-45.729	6.298	-4.512	-1.5	-1.498
10	5-Hexyn-3-ol	-1.4043	-52.884	6.332	-4.397	-1.101	-1.096
11	3-Heptyn-1-ol	-0.3231	-60.107	5.971	-4.293	-0.611	-0.606
12	4-Heptyn-2-ol	-0.616	-60.1	6.006	-4.298	-0.619	-0.614
13	3-Octyn-1-ol	0.017	-67.267	5.97	-4.296	-0.204	-0.201
14	2-Propen-1-ol	-1.9178	-33.253	5.571	-4.499	-2.049	-2.048
15	2-Buten-1-ol	-1.4719	-40.433	5.336	-4.328	-1.589	-1.585
16	(±)-3-Buten-2-ol	-1.0529	-40.409	5.673	-4.6	-1.665	-1.669
17	cis-2-Buten-1,4-diol	-2.1495	-52.608	5.307	-4.377	-0.891	-0.892
18	cis-2-Penten-1-ol	-1.1052	-47.593	5.324	-4.3	-1.18	-1.176
19	3-Penten-2-ol	-1.401	-47.592	5.424	-4.399	-1.202	-1.201
22	trans-2-Hexen-1-ol	-0.4718	-54.753	5.323	-4.301	-0.772	-0.771
21	1-Hexen-3-ol	-0.8113	-54.728	5.7	-4.849	-0.857	-0.876
22	cis-2-Hexen-1-ol	-0.7767	-54.753	5.323	-4.301	-0.772	-0.771
23	trans-2-Octen-1-ol	0.3654	-69.073	5.322	-4.306	0.042	0.039

IGC₅₀. 50% inhibitory growth concentration $E_{T_{\tau}}\eta$, χ are total energy, absolute hardness, electronegativity

presented in TABLE 1-4. Each table is divided into subgroups in order to demonstrate better and sequential relationship between the biological toxicity and reactivity parameters. The observed biological toxicity in each table has been arranged in increasing order. The reactivity indices such as total energy (ET) absolute hardness(η) and electronegativity(χ) of the corresponding alcohol derivatives are also presented in the table. The discussion has been made under two captions:-

- 1. Relationship with reactivity indices
- 2. QSTR model

Relationship with reactivity indices

First set

The first set contain 18 amino alcohol derivatives and their biological toxicity has been measured in terms of 50% inhibitory growth concentration. The reactivity indices along with biological toxicity of this set of compounds are placed in TABLE 1. A close look of this table indicates that toxicity increases by increasing the carbon chain in homologous series and decreases by the addition of alkyl amino group (R-NH₂). (R=CH₃

TABLE 5 : Relationship between absolute hardness and toxicity of first set

or C_3H_5 or C_3H_7). Except with absolute hardness where
there is direct relatively, there appears no relationship
of toxicity with other reactivity indices. Since there is
direct relationship of toxicity with absolute hardness,
the values have been separately tabulated in TABLE 5
and for sequential representation the table have been
divided in three subgroups A, B and C. Compound
(5), (6) and (13) do not follow the sequential trend.

Second set

The second set contain 18 acetylenic alcohol and diol derivatives and their reported biological toxicity has been reported in terms of 50% inhibitory growth concentration. The reactivity indices along with biological toxicity of this set of compounds are placed in TABLE 2. A close look of this table indicates that the toxicity decreases when two hydroxyl (-OH) group are attached at one carbon atom i.e. diol derivatives and toxicity increases by the addition of double/triple bond. Only the absolute hardness shows direct relationship, the other reactivity indices show no relationship. There is a inverse relationship between absolute hardness and ob-

TABLE 6 : Relationship between absolute hardness and toxic-
ity of second set

Compd. No	η	Т	Compd. No	η	Т
SUBGROUP-A			SUBGROUP-A		
16	5.753	-1.8338	12	6.919	-2.3013
14	5.875	-1.7941	13	6.917	-2.2365
4	5.896	-1.6842	16	6.915	-1.9531
3	5.905	-1.6491	17	6.912	-1.2669
15	5.953	-1.4275	1	6.280	-0.4024
12	6.097	-0.6191	6	6.257	-0.265
9	6.109	-0.5852	9	6.228	-0.0267
8	6.113	-0.5848	10	6.205	0.7426
SUBGROUP-B			SUBGROUP-B		
18	5.735	-1.7488	11	6.280	-2.0482
17	5.854	-1.5341	2	6.256	-1.1776
10	6.100	-0.7178	7	6.049	-0.0336
11	6.115	-0.6594	8	6.007	0.1944
SUBGROUP-C			SUBGROUP-C		
1	5.955	-1.8202	15	6.915	-1.9344
2	6.134	-0.9752	3	5.932	-0.5724
7	6.137	-0.958	4	4.942	-0.5549

 η is absolute hardness and T is reported toxicity in tems of 50% inhibitory growth concentration for tetrahymena pyriformis

 η is absolute hardness and T is reported toxicity in tems of 50% inhibitory growth concentration for tetrahymena pyriformis

45

served toxicity. In order to demonstrate the relationship, the values of absolute hardness and toxicity are placed in TABLE 6, and for sequential representation the table has been further divided into three subgroups-A, B and C. Compounds (5), (14) and (18) do not follow this trend.

Third set

Third set of derivatives contains 30 halogenated alcohol and saturated alcohol derivatives and their reported biological toxicity is shown in terms of 50% inhibitory growth concentration. The relationship between reported biological toxicity and electronegativity of this

TABLE 7 : Relationship between absolute hardness and toxicity of third set

Compd. No	η	Т	- Fourth
SUBGROUP-A	•		Fou
11	7.323	-2.6656	alcohol
12	7.116	-1.9912	TABLE 8
25	7.063	-1.7911	ity of fou
13	7.056	-1.7464	
15	7.023	-1.4306	SUBG
23	6.968	-1.0359	
27	6.927	-0.7368	
30	6.905	-0.7052	
5	5.817	-0.5329	
1	5.375	-0.3538	
SUBGROUP-B			
14	7.157	-1.8819	
16	7.106	-1.542	SUBGI
18	7.076	-1.1596	
24	7.051	-0.8702	
28	6.982	-0.6372	
29	6.977	0.1050	
9	5.383	0.5721	
SUBGROUP-C			SUBGI
17	7.063	-1.3724	
21	7.051	-1.1729	
22	7.033	-0.9528	
26	6.987	-0.3789	
8	5.820	-0.1879	SUBGI
SUBGROUP-D			
2	5.804	-1.5343	
3	5.799	-1.2446	
6	5.793	-0.8568	

set are shown in TABLE 3. A close look at this table indicates that the toxicity increases by the addition of halo group (-Cl or -Br) and toxicity decreases by the decrease in the carbon chain of homologous series. In order to examin the relationship between reported biological toxicity and absolute hardness the values, are placed in TABLE 7. A reference to this table indicates that there is direct relationship between absolute hardness and reported biological toxicity. However, no sequential relationship is seen by the values presented in TABLE 7. In order to provide sequential relationship the table has been divided into four subgroups-A, B, C, D, E and F. Compound (1), (9), (13), (17), (25) and (26) do not follow sequential relationship.

set

orth set of derivatives contains 23 unsaturated derivatives and their reported biological toxic-

TABLE 8 : Relationship between absolute hardness an	d toxic-
ity of fourth set	

Compd. No	η	Т
SUBGROUP-A		
10	6.332	-1.4043
1	5.731	-1.3889
16	5.673	-1.0529
8	5.602	-0.8411
7	5.353	-0.754
20	5.323	-0.4718
23	5.322	0.3654
SUBGROUP-B		
2	6.321	-1.4204
5	6.315	-1.2948
21	5.700	-0.8113
4	5.335	-0.7772
22	5.323	-0.7767
SUBGROUP-C		
9	6.298	-1.6324
12	6.006	-0.6160
11	5.971	-0.3231
13	5.970	0.0170
SUBGROUP-D		
14	5.571	-1.9178
15	5.336	-1.4719
19	5.424	-1.4010
18	5.324	-1.1052

 η is absolute hardness and T is reported toxicity in tems of 50% inhibitory growth concentration for tetrahymena pyriformis

 η is absolute hardness and T is reported toxicity in tems of 50% inhibitory growth concentration for tetrahymena pyriformis

ity is in terms of 50% inhibitory growth concentration. The reported biological toxicity along with reactivity indices are given in TABLE 4. A close look at this table indicates that the toxicity increases by the addition of double/triple bond and the examination of this table also indicates that cis form of the compound show less toxicity. In order to examin the relationship between reported biological toxicity and absolute hardness the value are placed in TABLE 8. A close look at this table indicates that there is direct relationship between absolute hardness and reported biological toxicity. However, no sequential relationship is seen by the values presented in TABLE 8. In order to provide sequential relationship the table has been divided into four subgroups-A, B, C and D. Compound (3), (6) and (17) do not follow sequential relationship.

QSTR models

The QSTR models of four groups of alcohol, have been developed separately in four sets. The quantitative values of descriptors (E_{T} , η , and χ) of all the sets of compounds have been evaluated with the help of PC Model software, using PM3 Hamiltonian and the results are included in TABLE 1-4 for the four sets, alongwith their reported values of toxicity. The QSTR study of each set is presented below:

First set

This set consists of eighteen derivatives of amino alcohol. The values of various descriptors of these compounds, in different combinations have been used for MLR analysis. The MLR analysis has been done by Project leader. The following four MLR equations providing high quality predictive toxicity are the following models:

$RE1=-0.0176448 E_{T}+3.73144\eta-24.6745$	
r CV^2=0.895305 r^2=0.906387	(9)
$RE2=-0.0200482 E_{T}+2.6751\eta+1.76358\chi-12.6263$	
rC^2=0.891749 r^2=0.94147	(10)

The equ. 10 (RE2) provides best result (rC^2=0.891749 r^2=0.94147) and is treated as best QSTR model. This model includes total energy as first descriptor, absolute hardness as second and electrone-gativity as third descriptor.

Second set

This set consists of eighteen derivatives of acety-

lenic alcohol and diol derivatives. The values of various descriptors of these compounds, in different combinations have been used for MLR analysis. The following two MLR equations providing high quality predictive toxicity are the following models:

RE3=-0.0430362 E_{T} -3.24659 χ -17.3497 rCV^2=0.48888 r^2=0.666245 (11) RE4=-0.0470833 E_{T} -0.57337 η -2.58083 χ -11.0288

rCV^2=0.314847 r^2=0.707338 (12) The equ. 12 (RE4) provides best result (rCV^2=0.314847 r^2=0.707338) and is treated as best QSTR model. This model includes total energy as first descriptor, absolute hardness as second and electronegativity as third descriptor.

Third set

This set consists of thirty derivatives of halogenated alcohol and saturated alcohol. The values of various descriptors of these compounds, in different combinations have been used for MLR analysis. The following three MLR equations providing high quality predictive toxicity are the following models:

 $\begin{array}{l} RE5=-0.0409116 \ E_{\rm T} \ -0.142859 \ \eta \ -2.11995 \\ rCV^2=0.610654 \ r^2=0.721792 \end{array} \tag{13} \\ RE6=-0.0472426 \ E_{\rm T} \ +0.930021 \ \eta \ -1.44334 \ \chi -15.552 \end{array}$

 $rCV^{2}=0.790504 r^{2}=0.863758$ (14) The age 14 (DEC) provides best possible (r^{2}=0.70050)

The equ. 14 (RE6) provides best result (r^2=0.790504 r^2=0.863758) and treated as best QSTR model. This model also includes total energy as first descriptor, absolute hardness as second and electronegativity as third descriptor.

Fourth set

This set consists of twenty three derivatives of unsaturated alcohol. The values of various descriptors of these compounds, in different combinations have been used for MLR analysis. The following three MLR equations providing high quality predictive toxicity are the following models:

 $\begin{array}{ll} RE7=-0.0568369 \ E_{\rm T} \ -0.220659\eta -2.70974 \\ rCV^{2}=0.529661 \ r^{2}=0.659909 \\ RE8=-0.0565628 \ E_{\rm T} \ -0.213777\eta +0.0424689\chi -2.54696 \\ rCV^{2}=0.51909 \ r^{2}=0.659993 \\ \end{array} \tag{15}$

In the above regression equations, the equ. 16 (RE8) provides best result ($rCV^2=0.51909$ $r^2=0.659993$) and treated as best QSTR model. This model also includes total energy as first descriptor, absolute hardness as second and electronegativity as third descriptor.

CONCLUSION

- 1. There is direct relationship between reported biological toxicity and absolute hardness of all the four sets of alcohol .viz 1, 2, 3 and 4. The absolute hardness can alone be helpful for searching alcohol of desired toxicity.
- 2. Total energy, absolute hardness and electronegativity are important parameter for QSTR study. The above combination of these descriptors provides best QSTR models as is indicated below.

RE2=-0.0200482 E_{T} +2.6751 η +1.76358 χ -12.6263	
rC^2=0.891749 r^2=0.94147	(10)
RE4=-0.0470833 E _T -0.57337 η -2.58083χ-11.0288	
rCV^2=0.314847 r^2=0.707338	(12)
RE6=-0.0472426 E_{T} +0.930021 η -1.44334 χ -15.552	
rCV^2=0.790504 r^2=0.863758	(14)
RE8=-0.0565628 E_{T} -0.213777 η +0.0424689 χ -2.5469)6
rCV^2=0.51909 r^2=0.659993	(16)
On the basis of statistical quality of results it is clea	er tha

one can use these equations to demonstrate the relative toxicity of compounds of similar series.

REFERENCES

- F.A.Pasha, H.K.Srivastava, P.P.Singh; Bioorg.Med. Chem., 13, 6823 (2005).
- [2] P.P.Singh, H.K.Srivastava, F.A.Pasha; Bioorg.Med. Chem., 12, 171 (2004).
- [3] P.P.Singh, F.A.Pasha, H.K.Srivastava; QSAR & Comb.Sci., 22, 843 (2003).
- [4] H.K.Srivastava, F.A.Pasha, P.P.Singh; Int.J.Quantum Chem., 103, 237 (2005).
- [5] F.A.Pasha, H.K.Srivastava, P.P.Singh; Mol.Div., 9, 215 (2005).
- [6] Y.G.Smeyers, L.Bounian, N.J.Smeyers, A.Ezzamarty, Hernandez-Laguna, C.I.Sainz-Diaz; Eur.J.Med. Chem., **33**, 103 (**1998**).
- [7] F.A.Pasha, H.K.Srivastava, A.Srivastava, P.P.Singh; QSAR & Comb.Sci., 26, 69 (2007).
- [8] L.H.Hall, T.A.Vaughn; Med.Chem.Res., 7, 407 (1997).
- [9] T.W.Schultz; Toxicol.Methods, 7, 289 (1997).
- [10] K.S.Akers, GD.Sinks, T.W.Schultz; Environ.Toxicol. Pharmacol., 7(1), 33 (2003).
- [11] S.D.Dimitov, O.G.Mekeyan, GD.Sinks, T.W.Schultz; J.Mol.Struct.(Theochem), 622, 63 (2003).
- [12] L.H.Hall, T.A.Vaughn; Med.Chem.Res., 2, 416 (1997).
- [13] J.J.P.Stewart; MOPAC 2002, Fujitsu Limited, Tokyo, Japan, (2002).
- [14] R.G.Parr, R.A.Donnelly, M.Levy, W.E.Palke; J.Chem.Phys., 68, 3801 (1978).
- [15] R.P.Iczkowski, J.L.Margrave; J.Am.Chem.Soc., 83, 3547 (1961).
- [16] R.S.Mulliken; J.Chem.Phys., 2, 782 (1934).
- [17] R.T.Sanderson; Science, 121, 207 (1995).
- [18] R.T.Sanderson; Chemical Bonds and Bond Energy, Academic Press: New York, (1976).
- [19] R.T.Sanderson; Polar Covalence, Academic Press: New York, (1983).
- [20] R.G.Parr, R.G.Pearson; J.Am.Chem.Soc., 105, 7512 (1983).
- [21] B.W.Clare; Aust.J.Chem., 48, 1385 (1995).

