Abstract
Synthesis, Structural and Optical Properties of L-Valine Modified ZnO Nanoparticles
Author(s): R. P. Ganorkar, K. P. Kalkar and Y. S. TamgadgeZinc oxide (ZnO) nanoparticles (NPs) have been synthesized by co-precipitation method using various concentrations of L-valine as surface modifying agent. All these samples of ZnO NPs were calcined with slow heating rate at 6000 C for two hours for the removal of L-valine. UV-visible spectroscopy has been utilized to characterize calcined and uncalcined ZnO NPs. Fourier transform infrared spectroscopy confirmed the role of L-valine as surface modifier. Particles sizes of all uncalcined and calcined NPs have been calculated using Effective Mass Approximation method. ZnO NPs capped with L-valine before calcination exhibit very narrow particle size distribution (7 to 8 nm) whereas particle size increased (upto 18 nm) after removal of L-valine through the process of calcination. In both uncalcined and calcined ZnO NPs, particle size decreased for ZnO NPs synthesized using largest concentration of L-valine. X-ray diffraction analysis confirms the formation of pure phase wurtzite hexagonal ZnO NPs. Morphological studies have been performed using field emission scanning electron microscopy and transmission electron microscopy techniques.
Share this