All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Stabilization of glucose oxidase on glycation induced nano-fibrils: New insight in enzyme immobilization

Author(s): Sara Farahi1 ,MehranHabibi-Rezaei, Azadeh Ebrahim-Habibi, AmirArasteh, Nader Sheibani, AliAkbarMoosavi-Movahedi

Amyloids are interestingbiomaterialswith useful properties includinghigh strength and resistance to degradation. These characteristicsmake amyloids suitable nano-structure candidates for bio-applications, includingenzymeimmobilizationscaffoldatnano-scale dimensions.Here, glycation induced bovine serumalbumin (BSA) nano-fibrilswere used as a scaffold for glucose oxidase (GOx) immobilization and the kinetic parameters optimumtemperature and pH of the free and immobilizedGOxwere compared.The covalently boundGOx onBSAamyloid nano-fibers oxidized glucose to release hydrogen peroxide that offers a significant antimicrobial property against E. coli to the immobilized enzyme product.However, the enzymeÂ’s catalytic performance (kcat/Km)was decreased due to the covalent immobilizationon nanofibrils. In addition, a broadening and an alkaline shift in the temperature and pHprofiles of the enzymewas observed. These changeswere concomitantwith improved stability of the GOx upon immobilization. Together our results showthat BSAnano-fibrils provide a suitable nanostructure for immobilization ofGOxwithenhancedstabilityand conserved catalytic activity.


Share this       
Google Scholar citation report
Citations : 256

ChemXpress received 256 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • Scholar Article Impact Factor (SAJI))

View More

Flyer