All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Prediction of naringin content based on machine learning methods

Author(s): Yan Zeng, Xinwen Cheng, Qi Li, Xiao Wang, Yuyun Chen

To increase the accuracy and speed of measurement of Naringin extraction rate, the prediction of Naringin extraction rate is raised based on Weighted Least Square Support Vector Machine (WLSSVM) and improved Artificial Bee Colony (ABC) of the machine learning methods. Taking the ratio of material to solvent, the extracting time, ethanol concentration and extracting temperature which influence Naringin extraction rate as the input of WLSSVM and Naringin extraction rate as output, learn extracting Naringin test data from shaddock peels. The results of simulation indicate that the prediction of improved ABC algorithm and advanced WLSSVM acquires better prediction speed, accuracy and stability and is appropriate for the prediction of Naringin extraction, compared with the methods of LSSVM and ABC-LSSVM.


Share this       
Awards Nomination

Table of Contents

Google Scholar citation report
Citations : 875

BioTechnology: An Indian Journal received 875 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • Euro Pub
  • ICMJE

View More

Flyer