All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Estimation of Mineral Oil Contamination in Synthetic Lubricants by 1H NMR Spectroscopy

Author(s): Sujit M, Dileep K, Ravindra K, Kavita R, Veena B, Kagdiyal V and Deepak S

One of the major phenomena occurs during the field trial of synthetic lubricants (SL) is their contamination with mineral oils due to leaking, improper handling and lubrication practices. Effect of this contamination beyond certain percentage generates excess foam, deteriorates air release, clogs the filters etc. which finally leads to damage of the equipment. Hence, estimation of mineral oil in a synthetic lubricant would be of great significance for quality monitoring and maintaining consistent performance. A 1H NMR based method for the estimation of mineral oil in SL based on group-V base oils has been developed. SL includes synthetic esters, phosphate esters, polysiloxane based oil etc. generally used as fire resistant hydraulic fluids, compressor oil, aviation lubricants, refrigeration oils etc. The quantitative estimation of the percentage age of mineral oil contamination has been carried out by unambiguous assignment of characteristic protons of SL over mineral oil using suitable internal standards. In the present study physical blends of pure synthetic esters and finished SL with mineral oil (Gr-II & III) have been studied followed by actual field trial samples. The new method also estimates mineral oil contamination in SL made of mixture of polyalphaolefin (PAO, group-IV) and group-V oils. The method has been validated by known blends. The method is highly repeatable and efficient over 5% (w/w) minreal oil contamination.


Share this       
Awards Nomination 20+ Million Readerbase

Table of Contents

Google Scholar citation report
Citations : 378

Analytical Chemistry: An Indian Journal received 378 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • ICMJE

View More

Flyer
rolex replica