All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Ensemble-SVM-based Model of credit rating system in electronic commerce

Author(s): Yuqiang Qin, Yudong Qi

In this paper, a four-stage ensemble support vectormachine (ESVM) based on multi-agent learning approach is proposed for credit rating system in electronic commerce. In the first stage, the initial credit dataset is divided into two independent subsets: training credit subset (in-sample data) and testing credit subset (out-of-sample data) for training and verification purposes. In the second stage, different ESVM learning paradigms with much dissimilarity are constructed as intelligent agents for credit rating evaluation. In the third stage, multiple individual ESVMagents are trained using training rating subsets and the corresponding rating results are also obtained. In the final stage, all individual rating results produced by ESVMin the previous stage are aggregated into an ensemble rating result. In particular, the impact of the diversity of individual intelligent agents on the generalization performance of the ESVM-based multi-agent learning way is examined and analyzed. For illustration, one corporate credit rating dataset is used to verify the effectiveness of the ESVM-based multiagent learning system.


Share this       
Awards Nomination

Table of Contents

Google Scholar citation report
Citations : 875

BioTechnology: An Indian Journal received 875 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • Euro Pub
  • ICMJE

View More

Flyer