All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Cascade Radical Reactions via the Formation of Carbon-Carbon/Heteroatom Bonds

Author(s): Timothy Wilson *

To build radical chemistry-based cascade events for forming carbon-carbon and carbon heteroatom bonds. The radical and anionic carbon-carbon bond-forming procedure produced,-disubstituted amino acids via the diethylzinc-promoted reaction of dehydroamino acid derivatives with acid anhydride or-allyl palladium complex. Using Bu3SnH and Pd (PPh3)4, this reaction was effectively developed into the reductive transformation of N-phthaloyl dehydroalanine. Using hydroxamate ester functionality as a chiral Lewis acid-coordinating tether between two radical acceptors, the chiral Lewis acid-mediated cascade radical addition-cyclization-trapping reaction went smoothly with good enantioselectivities. This approach was used in a cascade reaction involving the addition of electrophilic perfluoroalkyl radicals to electron-deficient acceptors with adverse polarity mismatch. In addition, a cascade sequence was observed that was terminated by radical-radical coupling. Cascade process strategies have the benefit of forming many carbon-carbon and/or carbon-heteroatom bonds in a single operation. In organic synthesis, radical chemistry has been developed as one of the most powerful strategies for forming carbon-carbon bonds.


Share this       
Google Scholar citation report
Citations : 565

Organic Chemistry: An Indian Journal received 565 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • Cosmos IF
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • ICMJE

View More

Flyer