All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Automated classification of FDG-PET images combining voxels of interest and neuropsychological assessments

Author(s): Wenlu Yang, Xiaoman Zhang, Fangyu He, Xudong Huang

To performthe automated classification ofAD orMCI subjects vs. healthy control (HC) subjects fromADNI PET images database, the study presents a novel systematic method of combining voxels of interest in positron emission tomography (PET) images and the neuropsychological assessments of subjects. It aimes to find the appropriate technology for the early detection of AlzheimerÂ’s disease (AD) or mild cognitive impairment(MCI). The method includes four steps: pre-processing, extracting independent components using ICA, selecting voxels of interest, and classifying them using a Support Vector Machine (SVM) classifier. PET image data were obtained fromtheADNI database including 91 HC, 50 patientswith baseline diagnosis ofAD and 105 patients with a baseline diagnosis of MCI. As a result, we achieved an excellent discrimination between AD patients and HC (accuracy 97.5\%, sensitivity 93.5\%, specificity 99.7\%), and a good discrimination betweenMCI patients and HC (accuracy 94.5\%, sensitivity 92.7\%, specificity 96.5\%). The experimental results showed that the proposed method can successfully distinguish AD or MCI from HC and that it is suitable for the automated classification of PET images


Share this       
Awards Nomination

Table of Contents

Google Scholar citation report
Citations : 875

BioTechnology: An Indian Journal received 875 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • Euro Pub
  • ICMJE

View More

Flyer