All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

A particle swarm algorirhm for solving the synchronous generator parameters identification on-line problem

Author(s): Xiuge Zhang, Ye Ren, Qizhou Hu

With high demand about security and stability analysis of power system, to obtain fast and accurate real-time grid model has become important for power system. the paper presents a small population-based particle swarm optimization (SPPSO) method to identify synchronous generator parameters based on the PMU data. Compared with hybrid genetic algorithm to make parameter identification of synchronous generator and got the better result. In this method, the parameters identification of synchronous generator is formulated as an optimization problem of input-output system. A small population-based particle swarm algorithm has less computation, fast convergence speed, the identification accuracy is high, it is suitable for real-time online parameter identification of power system. and the synchronous generator parameters identification becomes easy


Share this       
Awards Nomination

Table of Contents

Google Scholar citation report
Citations : 875

BioTechnology: An Indian Journal received 875 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • Euro Pub
  • ICMJE

View More

Flyer