All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

A novel T-FGM (1,1) forecasting model based on rbf neural network for water demand forecasting

Author(s): Xinjun Wang

In order to forecast the water demand and enhance the utilization of water resources, based on the basic principle of Grey Model with First Order Differential Equation and one Variable (GM(1,1)), in this paper, a novel First-entry traversal Grey Model with First Order Differential Equation and one Variable (T-FGM(1,1)) was established byminimumtotal residual sum of square. Furthermore, A T-FGM(1,1)( First-entry traversal Grey Modelwith FirstOrderDifferential Equation and oneVariable)-RBF ( radial basis function) neural network model is established. The proposed model not only educes the unstable factors that influence the forecast, but also can interfuse the advantages in the uncertainty domain in neural network.


Share this       
Awards Nomination

Table of Contents

Google Scholar citation report
Citations : 875

BioTechnology: An Indian Journal received 875 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • Euro Pub
  • ICMJE

View More

Flyer